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ABSTRACT
Biomedical studies may collect longitudinal and survival data in follow-up malaria
studies. In randomized controlled trials in malaria interventional studies the
longitudinal and survival data are analyzed separately (mixed-effect and Cox Models),
yet the longitudinal outcomes may be important predictors in the survival outcomes.
Standard methods for survival analysis, cannot be considered with such longitudinal
outcomes. In such studies, survival process may also include multiple events
(competing risks), implying that three blocks, survival, longitudinal and competing
risks need to be considered in the analysis. In order to assess the association between
the malaria longitudinal and the survival outcomes collected in biomedical studies, joint
modelling framework was considered to combine the three blocks in the analysis. Joint
models were also compared to separate models. Different survival outcomes observed
were severe malaria (4.95%), withdrawal (10.89%) and censored (84.16 %). The time-
dependent haemoglobin level and parasite count were not associated with the risks of
severe malaria and withdrawal in the extended-time dependent Cox model. The true
longitudinal markers parasite counts and haemoglobin levels were associated with the
risk of severe malaria (p <0.0001) and (p=0.029) respectively and had no effects on the
risk of withdrawal in the joint models as these markers change with time. Generally the
separate models were the best fit to the malaria dataset than the joint models due to lack
of association between the survival outcomes and longitudinal outcomes in the cause-

specific time dependent hazard model.
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CHAPTER 1

INTRODUCTION

1.1Background

Biomedical studies may collect repeated measurements of longitudinal data and time to
event/events of interest data during follow-up. A typical example is the AIDS study
where CD4 count and viral load are collected longitudinally and the time to AIDS or
death is also monitored (Elashoff et al., 2008). Another example is in cancer studies
where the longitudinal data and time to event data are collected for each subject. The
longitudinal data such as circulating tumor cells, immune response to a vaccine, a
genetic biomarker, or a health outcome are recorded (Ibrahim et al, 2010). Yet another
example is prostate cancer study, where patients are followed-up over time and during
that period death or metastasis can occur. In malaria studies, randomised blinded trials
are carried out to compare efficacy, and safety of drugs and resistance of parasites.
During follow-up, one of the measures of interest, may be time to fever resolution, time
to parasite clearance, with possible longitudinal covariates like white blood cell count

or red blood cell counts and changes in haemoglobin levels.

In these follow-up studies various outcomes are possible. To analyze such data, there
are methods for separate analysis of longitudinal data and survival data. For example,
in survival data, survival methods correctly incorporate information from both censored
and uncensored observations in estimating important model parameters. Early work in

survival analysis dates back to 1958, where a non-parametric estimator of survival



function is proposed. Non-parametric methods such as Kaplan-Meier product-limit
estimator and life tables are used to estimate the survival curves. Parametric methods
such as Weibull, exponential and Log-normal and log—logistics are widely applied in
survival data (Collet, 2003). In order to analyze the effects of covariates on time-to-
event, methods such as Cox proportion hazard model, and extended Cox model for
time-dependent covariates are used. The problem with Cox model for analysis of
survival data is that it is only theoritically valid for exogenous time-varying covariates
but not when studying biomarkers (endogeneous) and other patient parameters
(Andrinopoulou, 2014). The reason behind this inadequacy of Cox model is that it
assumes that from one visit to another, the marker’s level remains constant and that a
sudden change in the levels occurs when the patients come for a visit, and this leads to
a crude appromiximation about the path of the biomarker. Ignoring these special
characteristics and fitting the extended Cox model, would result in bias for the

estimated effect of a biomarker (Andrinopoulou, 2014).

In cases, where there are more than one failures (competing risks), intepretation of
survival probabilities has always been questionnable (Kleinbaum & Klein, 2005).
There have always been problems in the analysis such as estimation of the relationship
between covariates and rate of occurence of failures of specific types, study of
interrelation between failure types under a specific set of study conditions and the
estimation of failure rates for certain types of failure given the removal of the other
failure types (Kalbfleisch & Prentice, 2002). Methods such as cause-specific Cox model
and cumulative incidence curves have been developed and used in such situations. A

common assumption in all these models is that censoring is noninformative for survival



data with a single failure type, which is no longer applicable in presence of informative

censoring.

In longitudinal data, methods such as generalized mixed-effects regression models,
Covariance pattern models, ANOVA, Generalized Estimating Equations (GEE) are
used to analyze the repeated measurements with possible covariates (Hedeker &
Gibbons, 2006). The impressive feature about these models is that of explicit account
for the correlation within the measurements obtained from the same patients and can
handle unequally spaced visit times (Andrinopoulou, 2014). A major challenge for
analysis of longitudinal outcomes is the fact that measurements for the outcomes are
incomplete (missing). Missing data in longitudinal studies arise from a variety of
reasons. The main concern in longitudinal analysis with missing data arises when there
IS an association between the longitudinal profile and the missing process. Mechanisms
such as Missing Completely at Random (MCAR), Missing at Random (MAR) and
Missing Not at Random (MNAR) are commonly encoutered in longitudinal studies
(Andrinopoulou, 2014). However, in literature, methods for handling missing data in
longitudinal settings are considered, including selection models, pattern mixture
models and shared parameter models for discrete times (Molenberghs & Kenward,
2007). Joint distribution methods applicable for continuous time are applied to analyse
the longitudinal and missing processes (MNAR) since in reality patients skip visits or

dropout from the study.

In biomedical studies that collect longitudinal data such as malaria studies, covariates
can be important predictors of survival or some other time-to-event. In survival data

analysis, censoring is assumed to be noninformative, yet longitudinal response data is



affected by informative dropout, especially in cases with competing risks and also the
inclusion of time-varying covariates in survival analysis. This suggests need to
investigate the relationship between the longitudinal biomarkers and time to event of
interest. Thus the aim of this project is to assess the relationship between longitudinal

and competing risks survival malaria outcomes using joint models.

1.2 Problem Statement

Longitudinal and survival data collected together in biomedical studies are analyzed
independently, regardless of any possibility of relationship between these data (Ibrahim
et al.,2010). As such, the methodologies for analysis are not sufficient for they do not
account for other parameters, and the association between the two types of the data.
Using separate methods and ignoring special features of longitudinal and survival data,
may lead to underuse of potential variable information and lead to biased results and
conclusion about treatment effects (Sudell et al.,2016). Hence, need for joint modelling
approach to model the association between the two data sets. Also, many studies on
joint modelling of longitudinal and survival data in literature analyze and model the
data with one failure event but not much in presence of competing risks (multiple failure
events). To add to the body of knowledge in this subject area, with an application to

malaria data, this project is undertaken.

1.3 Objective
In particular the aim of the study is to assess association between malaria longitudinal

and competing risks survival outcomes using joint models.



1.3.1 Specific objectives
Specifically for this project, the emphasis was on the following objectives:

e Investigate association between baseline covariates and longitudinal and
survival malaria outcomes using separate models, and competing risks joint
models.

e Assess performance of joint models and separate models for malaria
longitudinal and competing risks survival outcomes in randomized controlled

trial.



CHAPTER 2
STATISTICAL BACKGROUND
In this chapter, an introduction of two aspects that help understand the joint modelling
process of longitudinal and survival data are presented. In the first case, survival data
and methods for analysis of such data are introduced. The second part of this chapter
presents the longitudinal data and the statistical methods for the analysis of repeated
measurements. These two blocks, lead to an introduction of joint models for analysis

of longitudinal and survival data even in competing risks settings.

2.1 Survival Data

Survival analysis is a collection of statistical procedures for data analysis, for which the
outcome variable of interest is time until an event occurs (Singh & Mukhopadhyay,
2011). Over the last few decades, since the World War Il motivated the study in the
reliability of the military equipment, the survival analysis has been a very important
field of research . It studies the time until an event of particular interest occurs, and with
it, it answers questions such as what kind of treatment is better for a certain illness, or
what variables have an influence in the recovery of a patients (Hevia, 2014). Initial
studies on survival analysis had an interest on death as an event of interest. In modern
world, survival data extend to time until onset of a disease, time until stock market
crash, time until an equipment failure in engineering, time until earth quake and so on
(Smith, 2002). The event of interest is usually called failure and the variable is called

failure time or survival time.



Survival analysis has become one of the most frequently used methods for analyzing
data in disciplines ranging from medicine, epidemiology, and environmental health, to
criminology, marketing, and astronomy (Lee & Go, 1997). In oncological studies, time
from diagnosis to death from any reason, time to tumor recurrence and the time from
diagnosis to tumor-related death are of interest (Zwiener, Blettner, & Hommel, 2011).
In business analytics, important outcomes such as time until a warranty claim, time
from initial sales contact to a sale and time from employee hire to either termination or
quit are analysed using survival techniques. Another example in clinical trials is time
to treatment failure in TB patients, time until AIDS for HIV patients and time until

cardiovascular death after some treatment intervention, (Elashoff, Li, & Li, 2008).

More generally, biomedical studies have been a root that inspires the biostatistics field.
They provide data with specific features that need special caution when doing the
analysis, and they keep coming up with situations where new statistical tools have to
be developed in order to be able to handle them (Hevia, 2014). Due to increased
biomedical research, survival data is more prevalent hence need for dedicated statistical
methods for analysis of such data for better analysis results and action. For example, in
clinical trials, to compare survival times of patients who receive one or other of the
treatment types, it is important to explore the relationship between the potential
predictors to survival or hazard of an event of interest. The resulting estimates could be
particularly useful in devising a treatment regimen and in counselling the patients about

their prognosis (Collet, 2003).

As shown above, survival data are common and collected in various fields. In this study

the focus is on application of survival analysis to biomedical fields. Another important



note on survival data is that the data are collected in follow-up studies, where patients
are followed until time when an event of interest occurs. In such studies not all subjects
have the event of interest observed, such individuals are said to be censored. The
following subsection presents censoring concept as is used in biomedical studies that

collect survival data.

2.1.1 Censoring in Surviva | Data
In follow-up studies, not all subjects experience the event of interest. This may be due
to loss to follow-up, or the study ends before the event of interest is observed. For these
reasons, part of the event of interest still remains unobserved, and as such the event
time is said to be censored. For example, suppose that a patient is recruited to a clinical
trial, where the outcome of interest is time to death from a certain cause. Suppose that
the patient moves to a different location or country and is no longer traced. The only
information available on the survival experience of this patient is the last date on which
he or she was known to be alive, which may be the last visit to the clinic. In such cases,
the death for this individual will not be observed and his or her survival time is

censored.

Censoring is classified as left or right (when survival time is less or greater than the
observation time). There is also interval censoring where time to event of interest is
believed to occur between some time points. Censoring process can also be classified

as informative or noninformative.



The distinction between informative censoring and noninformative censoring is that,
the former occurs when subjects withdraw from the study with reasons related to the
expected failure time while the latter, the reasons for drop-out are independent of the
study. Censoring makes the survival data more skewed and as such standard statistical
methods such as t-test, linear models and others are not appropriate for this type of data
(Collet, 2003). This skewness behaviour of survival data leads to specific and dedicated

methods for analysis of survival data.

In order to summarize survival data, it is required to define two important functions.
The following section presents two central functions of interest in the analysis of

survival data.

2.2 Important Functions in the Analysis of Survival Data
In summarizing the survival data, there are two functions of central interest namely, the
survival function and hazard function. These functions are therefore defined in the next

sub-section.

2.2.1 Survival function
Let T be a non-negative random variable for event time. In survival analysis , a subject
i is represented by the pair (T;, «;) where T; is the observed event time for subject i
and T; = (T, C;) with C; as the censoring time and «; as the censoring indictor with
oc;=1 if censored and o;= 0 otherwise. The survival function is defined as the
probability of surviving time t or probability that an event occurs after an instant ¢t.
Assuming that T is a continuous random variable, with F(t) as probability distribution

of T, then the survival function is defined as:



SO=PT2t)=1-F@)=1-["f@)du fort>0

f(.) is the corresponding probability density function. This function is therefore used
to represent the probability that an individual survives from the time origin to some
time beyond t.

S(t) must be a decreasing function with S(0) =1 and tlim S(t) = 0. In general, the

function S(t) provides useful summary information such as the median or quantile

survival times.

2.2.2 Hazard function
Another important function in survival analysis is the hazard function which expresses
the risk or hazard of an event at some time t, and is obtained from probability that an
individual fails at time t conditional on having survived to that time with T lying in the
interval [¢t, t + &t]. The hazard function is defined as:

Pt <T <t+6tT >0
St

A(t) = lim fort > 0.
S5t—0

Note that A(t)4t is the approximate probability that an individual fails in the interval

[t,t + &t] conditional on individual having survived to time t. The hazard function is

also called the instantaneous rate of failure or intensity rate.

The hazard function can be expressed in terms of survival function, likewise survival
function can be expressed in terms of the instantaneous rate of failure function. Using
the standard results in probability theory, the conditional probability of an event A

given B is written as:

P(ANB)

P(4IB) = %22

10



The conditional probability in the hazard function can be written as:

P(t<T<t+8t) _ F(t+8t)—F(t)
P(T=t) S(t)

The hazard function, will then be defined as:

— 1 F(t+8)-F(t)\ 1 . F(t+8)-F(t)\ _ .

) = (%%Lno( 5t )S(t) , but (}}Lno( St ) =F()' = f(),thus
_r®

A(t) =3 o'

From this relationship, it follows that:

At) = =) ang 5(¢) = exp(— f, A(s) ds = exp(—A(t)) , where A(t) is the

cumulative or integrated hazard.

2.3 Methods for Analysis of Survival data

The first step in the analysis of a set of survival data is to present the numerical or
graphical summaries of the survival times for individuals in a particular group in terms
of survival and hazard probabilities. Survival data are conveniently summarized
through estimates of the survival function and hazard function. This is achieved
through the use of non-parametric, semi-parametric and parametric methods for

analysis of survival data. In the next sections, the focus is on describing these methods.

2.3.1 Non-parametric methods
These methods are also called distribution-free, because they do not require specific
assumptions about the distribution of undelying survival times. The most well known
functions for estimation of survival and hazard functions are Kaplan-Meier , Nelson-

Aelen estimators and life tables. Other non-parametric methods for comparision of

11



groups of survival data will be introduced later. Here, Kaplain-Meier and Nelson-Aelen

estimators of survival and hazard functions are discussed.

Kaplan-Meier Estimator

This was proposed by Kaplan and Meier (1958). It is also called product-limit estimate
of the survival function. The derivation of Kaplan-Meier is done using the following
steps: Suppose that there are n individuals with observed survival times t; < t, <
ts,..., < t,.Some of these observations may be right-censored and there may be more
than an individual with the same survival observed times. Let r; be those at risk of event
at time ¢t; and d; be those that have failed at ¢;. The Kaplan-Meier estimator assumes
that the distribution is discrete instead of continuous, with the events only occurring at

these observed time points. The probability that an individual fails at t; is denoted

At) = d—f’ , as the estimated hazard at time t; and the corresponding estimated survival

T

probability is given by: $(¢t;) = r‘r;d‘
Under the assumptions that censoring is non-informative and that individuals fail
independently, the probability of surviving at any time t can be written as the product

of the conditional probabilities:
PT>t)=P(T>tIT>t—1DP(T>t—1)
=P(T>tIT>t—1DP(T>t—-1T>t—-2)..,

By repeating this method, the estimated survival function at any time t, is a Kaplan-

Meier survival estimator:

12



A plot of the Kaplan-Meier is a step function in which the estimated survival

probabilities are constant between adjacent event times and decrease at each event time.

Breslow and Crowley (1974) and Peterson (1977), proved the consistency of this
estimator and had shown that vn(S(t) — S(T)) converges in law to Gaussian process
with mean 0 and variance-covariance structure (Hevia, 2014). The variance for S(t) is

estimated using Green’s formula,

Var (ﬁ(t)) =8(1)? Zt,stﬁ

Nelson-Aalen estimator of survival function

This is an altenative estimator of survival function which is based on the individual
event times. It is obtained from an estimate of the cumulative hazard function. It is also

known as Alt-shuler’s estimate. This was proposed by Bleslow (1972).

$(t) = exp(—A(D)) = ﬁexf’ (_i_;)

with d; and r; defined as in the derivation of Kaplan Meier estimator. The estimator
has shown to perform better than Kaplan-Meier especially with small samples.
However, the estimates are asymptotically equivalent particularly at the earlier survival

times.

Having introduced the Kaplan-Meier and Nelson-Aelen methods for estimating the
survival probabilities, the non-parametric methods for comparing the survivor

probabilities in different groups of survival data are now considered.

13



2.3.2 Comparison of two groups of survival data
In clinical trials , it is common to randomise subjects to different treatments under
study. Survival experiences of patients in different groups may really differ suggesting
the need to consider the treatments, or the differences may not be there in such that the
observed differences are merely due to chance variation. In order to help distinguish
between these two explanations, non-parametric methods are applied. The basic
approach to compare two groups of survival data is to plot the corresponding estimates
of the two survival functions on the same axis, and the resulting plot can be informative.

This idea, is presented by (Collet, 2003) shown in figure 1.

1'0-_LLI;;“.:

0.8

chion

[EL:]

0.4 4

Estimated survivor fun

02

00 4 - T T —

a 50 100 150 200 260

Survival time

Figure 1: Kaplan-Meier estimate of the survival functions comparing two groups of
women turmours survival data: positively stained (__) and negatively stained (....).

Figure 1 indicates that the survival function for women with negatively stained
turmours is greater than that of women with positively stained turmors. This indicates
that the result of staining may be a useful indicator in prognosis. However, the plot does
not quantify the extent of between-group differences. As a result, non-parametric
procedures such as log-rank test , Wilcoxon test , Tarone-ware, Fleming’s Harrington,
Cox’s F-test, and Gehan’s Generalized Wilcoxon are used. In this section, log-rank test

and Wilcoxon test are considered.
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The log-rank test

Suppose there are two groups of survival data namely groupl and group2. Let t; < t,
<ts...,< t, be ordered event times across the groups. At time t;, denote number of
individuals who fail in groupl be d;; and number of individuals that fail in group2 be
d,;. Let ny; and n,; be individuals at risk at time ¢; in groupl and group2 respectively.
Then n; is the total number of individuals at risk at time t;. More information is
summarized in Table 1.

Table 1: Number of events at the i-th event time in each of the two groups

Group | Number of events at time t; | Number surviving | Number at risk
beyond ¢; just before t;

1 dy; ny; — dy; Ny

I dy; Ny — dy; Nai

Total d; n; — d; n;

Fixing the marginal totals in the table, and under the hypothesis that the survival is
independent of group, the four entries are determined by the value d,; which has a

hypergeometric distribution, with mean:

Nnqidq . nyingdi(n;—d;
ey = —— and variance vy; = —“nZ;(;( iy
i i“(Mj-1)

Combining the information in the table to get overall deviations and corresponding

variance gives a statistics:

U2 2
W, = V_Z ~xi ,where U, = ¥i_,(dy; —ey) and V, = Yi_, vy;.

This method was proposed by Mantel and Haenszel (1959). A test based on this statistic

is called Mantel-Cox or Peto-Mantel-Haenszel.
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The statistic is called log-raank test since it is derived from the ranks of the survival
times and the resulting rank statistic is based on logarithm of the Nelson-Aalen estimate
of survival function. The statistic summarizes the extent to which the observed survival
times deviate from the expected under the hypothesis of no group differences.
Wilcoxon Test
This is also called Bleslow test and is used to test the null hypothesis that there is no
difference in survival functions of the two groups of the survival data. It is based on the
statistic
r
Uy = Z n;(dqy; — eq;)
i=1
where the differences are weighted by n; (total number of individual at risk at time t;).

The variance for this statistic is estimated by

r

Var(Uy) = Z n?vy =V

i=1
with vy; , dy; , eq; as defined in the log rank test above. The corresponding test statistic

is then

In order to compare more than two groups of the survival function, extensions are made

to both Wilcoxon and logrank tests.

The logrank test is more suitable when an altenative to null hypothesis of no difference
in survival functions between groups is that the hazard for an individual in one group
at any time is proportional to the hazard for a similar individual in the other group at
the same time. This hypothesis is called proportional hazard, a useful assumption in

modelling survival data. In case of other deviations from null hypothesis, Wilcoxon test
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IS more appropriate. Having looked at non-parametric procedures for analysis of

survival data, next are semi-parametric methods.

2.4 Semi-Parametric Regression Methods for Censored Survival data

The non-parametric methods provided above, can be useful in analysis of single group
or survival data, or making comparison for different groups of survival data. In medical
studies that give rise to survival data , it is important for example to record demographic
variables such as age, sex of the patient and other physiological variables such as blood
volume, haemoglobin levels, and heart rate. It may also be important to record the
lifestyle of the patients such as smoking , physical exercise and dietary behaviours. For
example, in a clinical trial involving two treatments for prostate cancer, the primary
aim is to compare the survival experience of patients in the treatment arms (Collet,
2003). However, variables such age of the patient, size of the turmour are recorded and
may likely influence the survival times. As such it will be imperative to take account
of these variables when making assessment of extent of any difference in the survival
times. The variables such as age, turmour size and physiological variables are called

explanatory variables.

In order to explore the relationship between the survival experience of patients and the
explanatory variables, methods based on statistical modelling are applied. In survival
analysis, the interest centers on risk or hazard of failure at any time t. For this reason,

the modelling process focuses on hazard function.
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There are two common broad regression models used to relate the predictors to the
hazard function and these are: Proportional hazards model/ Cox regression model and

accelerated failure time model.

The proportion hazard model is a semi-parametric model, because no assumptions are
made regarding the nature of the baseline hazard function A,(t) and also there is no
assumption made regarding the distribution of the survival times, while the accelerated
failure time model can be considered parametric. In the subsequent section, the Cox

model is discussed.

2.4.1 Cox-regression/ Proportion hazard model
The model was proposed by Cox (1972) and it is also called proportion hazard model
because it is based on an assumption that , for two groups of survival data, the hazard
of failure for a subject in one group at time t is proportional to the hazard of failure for

the similar individual in the other group at the same time t.

In its basic form, the hazard function for a subject with predictors

X = (xi0, Xz, -, xip ) S

2, X) = Ao (t) exp(BTXy) ,

where BT is the vector of regression coefficients and A,(t) is the baseline hazard
function, that corresponds to hazard function of a subject with S7X; = 0. X; is a vector

of covariates for the i-th subject. Taking the log of the above function gives

o (Ai(t,:o

2o(D) ) = Pixin + BoXiz + BaXiz+, ..., BpXip-

The above equation means that log hazard ratio is equal to the linear component of the

explanatory variables. It can also be shown that efi is the hazard ratio.
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2.4.2 Cumulative Incidence Curves (CIC)
This is an altenative to Kaplan-Meier in competing risks setting , and involves the use
of marginal probabilities as introduced by (Kalbfleisch & Prentince, 1980). The CIC is
derived from a cause-specific hazard function, and provides estimates of the “marginal
probability” of an event in the presence of competing events, and does not require the

assumption that competing risks are independent. In order to come up with CIC, first
estimate the hazard at ordered ¢; when the event of interest occurs hy(t;) : estimated
proportion of subjects that fail from risk k. In order to be able to fail at time ¢;, a subject
must have survived to the previous time t;_;, thus the overall survival to time ¢;_; is
denoted S(tj_l). Overall survival is considered than cause-specific survival S, (t)

because the subject must have survived all other competing events. The estimated

incidence of failing from event type k at time ¢; is denoted by:

I (t;) = St (8.

Thus cumulative incidence at time ¢; is then the cumulative sum up to time ¢; (j=1to
j’=j ) of these incidence values over all event type k failure times.
or Ik(tj) =P(T <tk)= fot hy (u) S(u)du for continuous t and
L(t) = Zj:’:lﬁk( ti_1)hi () whent is discrete.
This is not a proper probability distribution since the cumulative incidence of failure

from event k is below one. Having looked at methods for survival analysis, next are

longitudinal data analysis methods.
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2.5 Parameter estimation in Cox regression model

The relationship between the hazard function and the explanatory variables is best
explored through the estimation of the regression coefficients S;,;. One way of
estimation is to assume the parametric form of the baseline hazard such as exponential
and then estimate the coefficients by maximization of the corresponding log-likelihood
function. Kalbleish & Pentice (2002), derived a likelihhod involving only S and X
based on marginal distribution of the ranks of the observed event times in the absence
of censoring. To the contrary, Cox(1972) showed that parameter estimation can be done

without specifying the baseline hazard and generalized in case of censoring.

Suppose that all event times are distinct, and let ¢t; < t, <ts3,...,< t; be the ordered
event times. Let R(t;) be the risk set at time ¢t;, and there will be r; individiuals in R(¢;).
The parameter BT can be estimated using partial likelihood maximization which is the
product over the set of observed event times of the conditional probability of seeing the
observed events, given the set of individuals at risk at those times, and the partial

likelihood is given as:

T e |
partial L(B) = 1:1[ lesRi exp(BTxy)

where g; is the failure or censoring indicator with ¢ = 1 fails, 0 otherwise. Inference
is done by treating the partial likelihood as if it fulfills all the properties of full

likelihood. The log-partial likelihood is given as:
n o

1—[[ exp(B"x;) l

i1 stRiexp(ﬁTxk)

=¥ [exp(BTx;) — log(Tker, exp(BTxi)]

L(B) = log
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Using partial-likelihood score equations: = 0, the maximum partial likelihood

al(B)
B
estimators S8 are obtained, where in the process iterative optimization procedures such

as the Newton-Raphson algorithm are applied. The estimated 8 can be used to estimate

baseline hazard and cumulative hazard using Breslow’s estimates,

1

and Ao(t) = ity 5— sz -

Ao() =

Yker; exp(BTxx)

After fitting a Cox model, it is important to conduct model diagnostics, to check
whether the fitted model comforms the data or not. In this next section, model

diagnostic procedures in survival data analysis are discussed.

2.6 Model checking in Cox regression model

Once the Cox regression model has been fitted to the observed data, it is very important
to check the adequacy of the model. The use of diagnostic procedures is an essential
part in model process. For example, the model must include an appropriate set of
explanatory variables from those measured in the study, and may need to check that the
correct functional form of these variables have been used. It may also be necessary to
check the proportional hazards assumptions in the modelling process. In Cox regression
model, the procedures for model checking are based on quantities called residuals. In
survival data analysis, various residuals namely, Cox-Snell, Modified Cox-Snell,
Martingale, Deviance, Schoenfeld and Score residuals. In this section, Cox-Snell and

Schoenfeld residuals are discussed.
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Cox-Snell Residuals

Introduced by Cox and Snell (1968). They are the mostly used residuals in survival data
analysis. The Cox-Snell residual for the i-th subject at time ti, =1, 2,...,nis given by
e, = exp(Bx;)Ho(t;)

where H,(t;) is an estimated baseline cumulative hazard at time t;. Note that the Tc, 1S
just equal to H;(t;) = —log S;(t;) ,where H;(t;) and S;(t;) are estimated cumulative
hazard and survival functions for the i-th individual from the observed data. In order
to check for model adequacy, one expects that if the fitted model is satisfactory, then
a model based on estimate of survival function for the i-th individual at time ti will be
closer to the corresponding value of S;(t;). Here —log S;(t;) behaves as n observations

from exponential distribution with unit mean.

Schoenfeld residuals

The disadvantage of the rest of the residuals is that they depend on estimated survival
function and require an estimate of cumulative hazard function. These challenges are
addressed by residuals proposed by Schoenfeld (1982). The important feature of this
residual is that there is no single value of residual, for each individual, rather a set of
values corresponding to each and every predictor included in the fitted model. The i-th
Schoenfeld residual for X; , the j-th explanatory variable in the model is :

A A YieR(t) Xjl exp(Bxy)
Tpj; = 5i(xji - aji) TS p——

where x;; is value for the j-th explanatory variable j=1,2,3..., p for the i-th individual
in the study, &; = 0 if censored and 6; = 1 if uncensored, R(t;) is the risk set at time

t;. Schoenfeld (1982) showed that the Tp; are asymptotically uncorrrelated and have

expected value of zero, thus a plot of Tpj; and X;j should be centered around zero.
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2.7 The Extended time dependent Cox model

The previous Cox model in section 2.4.1, assumes that the hazards depend on covariates
whose values do not change with time. For a given subject, some covariates may be
changing with time. These covariates are called time-dependent. These can further be
classified as exogenous or endogenous covariates. Exogenous variables have values
that change because of causes not related to the subject of the study, ‘external’
characteristics that affect several individuals simultaneously. Presented in terms of
probability, the future path of the exogenous covariate up to any time t > s is not affected
by the occurrence of an event at time points, i.e.,

Pr(y;(Olyi(s), T; = s) = Pr(yi(O)lyi(s), T; = 5)

where 0 <s <t and y;(t) = {yi(s),0<s <t }.

The standard examples include period of the year (winter or summer), and
environmental factors such as temperature, humidity, and polution levels
(Andrinopoulou, 2014). Other factors that can be predetermined from the beggining of

study such as treatment dose, are also examples of exogeneous covariates.

The endogenous covariates are time-dependent measurements taken on the subjects
under study, such as biomarkers and clinical parameters. An exogenous covariate is a
predictable process, while the endogenous covariates are not. Another feature of
endogenous covariates is that they are usually measured with error and their complete
path up to any time is not fully observed and their complete history is not known
(Andrinopoulou, 2014). For example, in malaria studies, blood biomarkers such as

haemoglobin levels, number of parasites and others are endogenous covariates. In this
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case, there is a need to postulate a model that relates the time varying covariates and

the time to event of interest.

This model was proposed by Cox (1972). The extended Cox model is given as:

2i(t,yi(£), %) = Ao(Dexp[(BTx) + ay;(D)],

where y; is a vector of time dependent covariates and x; denotes the baseline covariates.
Interpretation of regression coefficient vector e is that exp(a) denotes relative increase
in the risk for an event at time t that results from unit increase in y;(t). The
interpretation of f is the same as in the previous Cox model.

Parameter estimation of « is based on partial likelihood estimation function,

PU.@) = Y [ expl(8x) + an(])

i=10

— log lz exp[(BTx) + ay;(O)]|dN;(t)
J

where N;(t) is the counting process which counts the number of events for subject i,

by time t.

The above Extended Cox model assumes that the time dependent covariates are a
predictable process, measured without errors and their complete path can be specified,
and assume that covariates change value at the follow-up visits and remain constant in
the time interval in between these visits which is delusive with time dependent
endogenous covariates such as biomarkers. Ignoring these features and fit extended Cox
regression model will lead to biased estimates of the biomarkers, thus need for

dedicated methods of survival analysis.
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2.8 Parametric Models for Analysis of Survival data

The previous Cox model seen before, does not make any distribution assumption
regarding the event times. In parametric model, the survival times are assumed to have
a certain distribution, so the baseline hazard is also assumed to have some distribution.
Models in which a specific probability distribution is assumed for the survival times
are called parametric models (Collet, 2003). Parametric forms that can be assumed for
the survival time include, the exponential, Weibull, Exreme value, log-normal and log-
logistic distributions (Tableman & Kim, 2004). However, the mostly used parametric
models are Weibull distribution introduced by Weibull (1951) and exponential

distribution. This section only presents the Weibull distribution.

Weibull distribution.
Suppose that survival time T follows a Weibull distribution, then

f(t) = Ayt lexp(—AtY) for 0 <t < oo as the Weibull probability density function.
The corresponding hazard function is given as: h(t) = Ayt¥~1!

so that the survival function is:
S(©) = exp(= [y yu " dy) = exp(=At"),
where A is a scale parameter and y as a shape parameter. This distribution, has the

E(T) =/1‘11“(1+%). With the change in shape parameter, the following is the

behaviour of h(t), the hazard function.
For y < 1, h(t) is a monotone decreasing function, y > 1 , h(t) is an increasing

function. In order to relate the hazard function at any time with respect to covariates,

then the hazard model at any time t, with respect to the explanatory variables will be:
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h;(t) = exp(Bx;) ho(t), where baseline hazard is given as: hy(t) = Ayt?~1. The
corresponding survival function, based on the above hazard is :

Si(t) = exp(—exp(Bx;) AytY).

Fitting these models require parameters to be estimated. The following section,

discusses the parameter estimation in the above hazard model.

2.8.1 Parameter Estimation in Weibull distribution
In order to assess the plausibility of the distribution for survival times , one compares
the survival function with that of a chosen model. One way to do this, is by
transforming the survival function to produce a plot that should give a straight line if
the assumed model is appropriate. However, to achieve this, parameters in the model
need to be estimated using, the methods of maximum likelihood.
Suppose there are r failures among the n individuals with n-r censored times. For

Weibull distribution function, the likelihood function is given as:

LD = T () 5:(0),

where §; is zero if censored and unity otherwise and h;(t) and S;(t) are hazard and
survival functions respectively, as defined in previous subsection. The corresponding
log likelihood function after substituting the hazard and survival functions accordingly
IS:

log(L(y, 4, x)) = XI1[6:{B'x; + log(At) + ylogt;} — Aexp(B'x)t"].
Differentiating this function and equating to zero gives the maximum likelihood

estimates of B',y and A.

In the next section, methods for analysis of survival data, but in competing risks settings

are discussed.
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2.9 Competing risks Survival Data Analysis

In medical studies, though researcher may be interested in one particular outcome of
interest, there are situations where there are several reasons why an event can occur,
and this is known as “competing risks”. Competing risks are said to be present when a
patient is at risk of more than one mutually exclusive events, such as death from
different causes, and the occurence of one of these will prevent any other event from
ever happening (Gichangi & Vach, 2005). Estimation of the marginal or net survival
function of the time to an event, in a competing risks framework is a common problem
encountered in medical applications of survival analysis (Zheng & Klein, 1995). Often
it is impossible to measure the time to occurence of an event of interest due to the
occurrence of some other event, a competing risk, at some time before the event of
interest. This competing event can be the withdrawal of the subject from the study,

death, or failure from some cause other than the one of interest (Williamson et al.,2007).

In clinical trials of new treatments, patients may withdraw because they are doing
poorly with new treatment. For example, in epilepsy studies, patients diagnosed with
epilepsy are given antiepileptic drug. In such studies, if the treatment groups have no
seisure and there are few side effects, it is considered successful. Treatment that causes
unacceptable side effects are changed to an altenative, whilst a treatment that fails to
control seizures will either be changed to an altenative, or a second drug will be added

(Williamson et al., 2007).

In such studies, of interest is retention time, defined as the time from randomisation to
the withdrawal of the randomised Anti-epileptic drug or addition, a primary outcome

recommended by the International League Against Epilepsy (Sander et al., 2007).
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The possible competing risks include withdrawal due to adverse effects and inadequate
seizure control. Some authors have examined separately the time to withdrawal due to
side effects (Lhatoo et al., 2000) and have censored patients whose allocated treatment
is changed due to inadequate seizure control, which may give misleading results as
analyses assume that the competing risks of withdrawal are independent (Kalbfleisch
& Prentince, 1980). Ignoring this aspect of an outcome by analysing events overall can
result in misleading conclusions (Kalbfleisch & Prentince, 1980). If a patient
experiences a competing event, standard survival analysis methods treat that patient as
censored for the outcome of interest (Scherzer, 2017). Censoring due to loss to follow-
up may be negatively or positively correlated with the event time (Hevia, 2014). This
is very important, since Kaplan-Meier curves overestimate the incidence of the
outcome over time and use of Cox models inflates the relative differences between

groups, resulting in biased hazard ratios (Scherzer, 2017).

Models for Competing risks
A notion of competing risks setting can be graphically presented with an event-free

state and various end points corresponding to distinct failure types.

Cause 1

Alive >

Cause K

Figure 2: Multiple events scenario with k distinct events.
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One approach to handle such situations is to consider those that experience the other
event types as censored, and then estimate the corresponding probabilities of failure an
approach called “ naive Kaplan- Meier”. The problem with this approach is that, it
violates the independence assumption of censoring process. In case where the
competing risks survival times distributions were independent of the survival times for
the event of interest, one would expect the hazard of event of interest at any time point
to be the same for the subjects that are still under follow-up. Howbeit, the naive K-M
will overestimate the probability of the failure and underestimate the survival

probabilities. The other approach is the use of cause-specific models.

2.9.1 Cause-specific hazard function
Let C;(T;, D;) denote the competing risks survival data on subject i, where T; is the
failure or censoring time , and D; takes the values {0, 1, 2, ..., g}, with D; = 0 indicating
a censored event and D; = k showing that subject i fails from the k" type of failure,
where k=1,...,g. Throughout, the censoring mechanism is assumed to be

independent of the survival time. The cause —specific hazard model is defined as:

= hOk(t)exp(ykTWiT), t>0

. P(t<Tist+h,D;|T;>t)
=1

Atk lim -

Where A(t), is the instantaneous rate for failure of type k, W7 is a vector of covariates

that are associated with the hazard function, and y,”, a corresponding vector of

regression coefficients, hy; is a completely unspecified baseline hazard function for

risk k. In its basic form, it is assumed that the hazard ratio (j(_tzf)) depends only on
0k

covariates, whose value is fixed during follow-up (baseline covariates).
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The exp(y) is called the cause-specific hazard ratio for the k event, and it represents the
relative risk of failing from that event when the correspondent variable increases one
unit in its value. In competing risks settings, the other approach is to use the cumulative

incidence curves for the event of interest and the competing events.

2.10 Longitudinal Data Analysis

Longitudinal studies are defined as studies in which the outcome variable is repeatedly
measured; i.e. the outcome variable is measured in the same individual on several
different occasions (Twisk, 2003) . Longitudinal data are frequently encountered in
health studies related to humans, animals or laboratory samples. Longitudinal data can
be obtained retrospectively or prospectively, but much of longitudinal data is collected
in prospective studies. In sociology and economics, longitudinal studies are refered to
as panel studies. For example, in Family Medicine, studies on cardiovascular
complications among patients with diabetes mellitus, longitudinal outcomes such as
glucose levels, blood lipids levels, systollic and diastollic pressure are measured
repeatedly over time (Weel, 2005). In cancer studies, the longitudinal data such as
circulating tumor cells, immune response to a vaccine, a genetic biomarker, or a health
outcome are recorded (Ibrahim et al.,2010). Another example is in AIDS studies where
repeated measurements of CD4+ and viral load are recorded during disease progression.
In clinical trial, comparing different drug regimen therapy for schizophrenia, the
Positive and Negative Symptom Rating Scale (PANSS) a measure of psychiatric
disorder are repeatedly recorded (Diggle et al., 2004). In reproductive epidemiology,
studies on progestrone collect the urinary metabolite progesterone over the course of

the women’s menstrual cycles (days) (Wu & Zhang, 2006).
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Longitudinal data is got via longitudinal research design at a number of seperate
occassions in time called “phases” or “waves of the study”. In a randomized clinical
trial, investigators often collect prospective longitudinal data on one or more endpoints
in response to a particular intervention relative to a control condition. The focus may
be either to determine if there is a significant difference between control and treated
individuals at the end of the study, often termed an “endpoint” analysis, or to
examine differential rates of change over the course of the study in treated and

control conditions.

In the case in which subjects are initially randomized to the control and treatment
conditions, differences in either the final response or the rate of response over time
(e.g., differential linear trends over time) are taken as evidence that the treatment
produces an effect on the outcome measure of interest above and beyond chance
expectations based on responses in the control condition (Hedeker & Gibbons, 2006).
Measuring subjects repeatedly through the duration of the study, one expects positive
correlation, which means that standard statistical tools (like the t-test and simple
regression) that assume independent observations, are not appropriate for this kind of
data analysis (Hevia, 2014). Since longitudinal data are prospective studies, missing
data issues are inevitable. In an attempt to treat the longitudinal data, with more realistic
assumptions and missing processes, a variety of more rigorous statistical methods have

been developed.

The mostly used models in longitudinal data analysis include ANOVA models,
MANOVA models, covariance pattern models, mixed-effects regression models (Laird

& Ware, 1982), and generalised estimating equations (GEE) (Zeger et al., 1988).
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Other models for analysis of missing processes such as selection models, pattern
mixture models, and shared parameter models for discrete time are existent and applied
in longitudinal data analysis (Molenberghs & Kenward, 2007). In the following
subsections, the focus is on mixed-effects model, covariance pattern models and GEE

models.

2.10.1 Mixed-effects Regression Model (MRM)
A basic characteristic of mixed effects models is the inclusion of random-subjects
effects in the model in order to account for the influence of subjects on their repeated
measurements. Random effects describe each person’s trend across time, and explain
correlational structure of the longitudinal data. This intuitive idea about the MRM is

depicted by Figure 3.

Dependent Variable

Average Group Trend ||

| = = Indwidual 1 Trend
2r - = = Individual 2 Trend

o i 2 s . s
Time
Figure 3: Random intercept Mixed-effects Model
Figure 3 depicts the population average trend represented by the solid line, and two
individual trends which are subject-specific mean profiles over time, one above and

other below the population average trend line.

The basic model is given as follows:

yi(tij) = Bo + Butij + &ij.
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In this model, both y and t are allowed to change by individual and occassions, and
&;j~N(0,52) and independently distributed.

The independence assumption of random errors makes the above model unrealistic for
longitudinal data, since y are observed repeatedly from same individual and it is more
reasonable to assume that errors within an individual are correlated to some degree. The
model also posits that the change across time is the same for all indviduals since
Bo and B, ,( initial level and linear change across time) do not vary by individual. As
such it more important to add individual-specific effects that will account for data

dependency and describe differential time trends for different individuals.

An extension to the above model is given as:

yi(tij) = Bo + Butij + voi + &),

where v; describes the influence of individual i on their repeated observations, v,; may
deviate from zero, since subjects may have negative or positive influence on their
longitudinal data. Goldsten(1995) suggests that the model should be presented in a
hierarchical or multilevel form to best reflect how the model characterises an
individual’s influence on their observations. Thus

Level 1: y;(&;;) = bo; + by;tij + &; , as within subject model

Level 2: by; = By + vo; , b1i = P1 between—subjects model /slope as outcome model

(Burstein, 1980).

Individuals in a sample are representative of the general population, then v,; are
considered random effects, with vy;~N(0,67), and &;~N(0,6%), which are

conditionally distributed (conditional on individual-specific effects, v,;) and the above

model is a random effects model. The generalization of this model, allowing additional
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predictors and regression coefficients to vary randomly, is known as the linear mixed-
effects model, and the standard model for a continuous longitudinal outcome is given
as:

yi(tij) = mi(ti;) + &; (1)
where m;(t;;) is a linear predictor term (mean response):

m;(t;;) = Xi(tij)TB(l) + Zi(tij)Tbl- (2)
and &ij ~N(0,6%I,,) are measurement errors , which are assumed to be
independently and identically distributed. Let X;(t;;) be a design vector of covariates
for subject i associated with fixed effects B, Also Zi(tl- j) denotes row vector of the

design matrix associated with a latent random variable (vector) that can be interpreted

as subject-specific random effects b;.

The standard model assumes that the random effects are distributed as multivariate
normal with mean 0 and variance-covariance matrix D, i.e b;~N(0, D) and the model
also posits that b; is independent of ¢;; .yl-(tl-]-) is the longitudinal outcome measured
at time t for subject i, wherei=1, 2, ..., ni, and }; n; is the total number of longitudinal
observations . The use of nj, suggests the fact that due to different event times , some
patients may miss one or more visits. It is further assumed that the missing values in
the longitudinal measurents caused by reasons other than occurence of events are
missing at random. This model accounts for correlation for measurements within a

subject and handles unequally spaced visit times.

The interpretation of the fixed effects B™ is the same as in a simple linear regression

model: assuming p covariates in the design matrix X, the coefficient B; , for j=1, 2,...,p
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denotes the change in the average yi(tij) when the corresponding covariate X is

increased by one unit, while all other predictors are held constant. In the same way, b;
show how a subset of the regression parameters for the i-th subject deviates from those

in the population.

With mixed-effects models one is able to include subjects with incomplete data across
time, hence increasing the statistical power, and avoid bias presented by complete-case
analysis where complete cases may not be representative of the whole population. The
other advantage of mixed effects model is that MRM estimates changes for each
subjects, and mean response changes in the population. It is important to estimate the
parameters in the model, and the next section discusses the methods applied in

parameter estimation.

2.11 Parameter Estimation in Mixed-effects regression model
In this section are the methods used to estimate the fixed effects and random effects in

the analysis of longitudinal data.
e Fixed effects estimation

Parameter estimation can be done using generalised least-squares estimation for B
which is the same as maximum likelihood estimation of fixed effects. This can be done,

using marginal models,

yi(ti;) = X;B + &; , with &; = Z;b; + ; , with correlated errors , and variance-
covariance matrix,
cov(ej;) =Vi = ZiDZ{ + &I, with I,, identity matrix. Assuming that V; is

known, minimizing the function,
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U= (y —XB)'V~1(y — XB) , one obtains the generalized least square estimators for

B, given as:

n -1 n
(Z XiTVi_IXi) Z XVt
i=1 i=1

This method is based on Liang and Zeger (1986).

B

e Random effects estimation

There are various methods to prediction of random effects, one of which is using
Henderson’s mixed model equation, that considers joint distribution of y and b and the
log-likelihhood function of the linear model (Henderson et al., 2000). The Henderson’s
equation yields the best linear unbiased estimators for both the random effects and the
fixed effects. The equation is given as follows:

X'RTX  X'R'Z “B]:[X’R‘ly]
Z’R7'x Z’R7zZ+ Dbl T lz’R71yl"

and this has the solutions
B=XVv1x)"'X'V-'y and
b=DZ'V'(y — XB) ,where R = §%L,y,.

V is estimated using maximum likelihood estimation or restricted maximum estimation.
However, MLE is biased for small samples and RMLE gives better estimates with small
sample. To obtained a closed form of the estimates, numerical optimization methods

such as Expectatiom—Maximization (EM) methods are used.
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2.12 Covariance Pattern Models (CPMs)
These models were introduced by Jennrich and Schluchter(1986), and assumes that
timing of the measurements are fixed (subjects intended to be measured at the same

finite number of occassions).

They are an extension to MANOVA models, however they allow incomplete data
across fixed number of time points and allow a variety of possible variance-covariance
structures. The variance-covariance matrix of the repeated measurements are assumed
to be of particular form, and not resulting from inclusion of random-subject effects.
They are considered as an extension to multiple linear regression with flexibility in the

structure of variance-covariance matrix. The model is given as below:

yi=X9+¢, i=1,2,...,N, j=1,2, ... ni observations for individual i. y; is the
n; X 1 dependent variable vector for i-th individual, X; is the n; X p predictor vector for
an i-th individual. 9 is the px1 vector of fixed regression parameters and &; is the n; X
1 error vector. It is further assumed that £;~N(0,);) and y;~N(X;9,).;). Note that

each Y; is a submatrix of n xn matrix 3. where n is the total number of fixed points.

2.12.1 Variance-Covariance Structures
There are several (error) variance-covariance structures and these include compound
symmetry, first-order autoregressive, Toeplitz, unstructured form and random effects,
and exponential structures. In this section, the compound symmetry and the

Unstructured forms are described.

Compound Symmetry
This specifies equal variances and equal covariances. In a matrix form, it can be written

as

37



0% + o2 o? o? o ]
J% 02+-0f o? of
3= ol cr% 0% + o o}
o3 cr? 012 0? + cri?

With variance of the response variable 2 + o2 and covariance for any pairwise
association of the response variable is oZ. The number of parameters in this structure

is 2, namely o2 and of.

Unstructured form

The other variance-covariance structures assume that variance is constant across time
(Compound symmetry), and that the lagged correlations are either all the same,
decrease exponentially or equal within lag. For example the Toeplitz structure, is
reasonable when the time intervals for the measurements are the same or nearly the
same. In reality, the above assumptions may not hold, hence resort to unstructured form.
This allows that the parameters be different and has a symmetric matrix with n(n+1)/2

parameters. In a matrix form,this can be written as :

[ 611 B2 b1z ... O1p ]
O21 b2 B2z ... 6an
=1 031 O3 633 ... O3p

Gnl Hni 9n3 S gnn

Where 6;; = 6, due to the symmetry.
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2.12.2 Model Selection for the Variance-Covariance structures
To determine which covariance-variance structure that best fits the data, (Jennrish &
Schluchter, 1986) use likelihood ratio test to compare the various structures to
unstructured form (saturated model). The test has n(n+1)/2 —q* parameters where q” is
the number of parameters in the reduced model. This model selection requires that the
covariates be the same for both the saturated and reduced models. Both maximum
likelihood and restricted maximum likelihood methods can be used in model estimation

and likelihood calculations.

2.13 Generalized Estimating Equation Models (GEE)

Longitudinal data are correlated. To account for this correlation, GEE models were
developed by (Zeger et al., 1988) as an extension to generalized linear models. GEE
models are also called marginal models indicating that the model for the mean response
depends on covariates of interest not any random effects (Fitzmaurice et al., 2004). The
model assumes MCAR missing processs for the data, fixed number of time points, and
only the nxn correlation matrix is considered in GEE models. The model makes
specifications on marginal distribution and likelihood of y;; for varying y which is
different in CPMs where the joint distribution and likelihood function of y; are
specified. GEE models have a wide range of applications to different types of outcome
variables, including count, categorical and continuous data. More literature on GEE
models include, Davis(1993), Zeger et al (1988), Diggle et al (2002) and Hardin and
Hilbe (2003). Here, GEE models based on Liang and Zeger (1986) are described. In
order to understand the GEE model, it is important to consider the generalized mixed
effects models, since they are considered a root for GEE models, in case of correlated

longitudinal measurements.
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Generalized Linear Models

GEE basically has the focus on regression of parameters B not the variance-covariance
structures. Since GEE models are an extension to GLMs for the case of corrrelated data,
to motivate the understanding of GEE models one reviews the GLMs. GLMs are family
of models that are used to fit fixed effects regression models to normal and non-normal

data (Nelder & Wedderburn, 1972).

In these models the response variable is considered to belong to a class of distributions
called exponential family with common GLMs such as linear regression for normally
distributed response variable, logistic regression for binary response, and Poisson
regression for count dependent variable. The GLMs have three specifications, namely
linear predictor, link function and variance of the response variable y; conditional on
x;. The linear predictor ¢; = x;B with the possible link functions g(.) that convert
the expected value y; of y; to the linear predictor and the variance of y; as is seen

below:

g(u;) = p; an identity link function in ordinary multiple regression and var(y;) =
@v(u;) where v(u;) is a known variance function and @ is a scale parameter that may
be known or estimated. In ordinary logistic regression, @ is set to 1, and v(y;) is the
error-variance. The link functions and variances of y; can be specified for both logistic

and Poisson regressions.

To obtain estimates for f, the estimation equation

n ’

0B =Y (55) WO - =0

i=1
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which depends on mean and variance of y and not the distribution of y is used. Thus
solutions of this equation provided estimates called “quasi-likelihood estimates”.
GLMs are fixed effects regression models and assume that the observations are
independent, hence not suitable for analysis of longitudinal data which is highly
correlated. However, they are extended to account for correlation inherent of

longitudinal data, thus GEE models.

e GEE Models
Since these models assume fixed time points, they only need to assume distribution of
yi; at time j. There is no need to assume joint distribution of y; , but only the marginal
distributions of the independent variable at the time points. GEE focus on regression
of y on X. Since GEE models are an extension to GLMs, they also make the following
specifications:

Linear predictor: ¢;; = x;;8 , with x;; as covariate vector for subject i at time j.
Link function: g(u;;) = @;

Varaince of y: v(y;;) = @v(u;), with v(u;;) as known variance function and @ a scale
parameter that can be estimated.

Working Correlation Structure

This is an additional component that misses in GLMs. The working correlation structure
of the repeated measures is R of size n x n since subjects are measured at fixed time
points: This specification, now accounts for correlation inherent of longitudinal data.
The subject i correlation matrix is R; of size nj x n; if n; <n, since subjects need not to

measured at each time point. The R thus R;, is assumed to be dependent on a vector of
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correlation parameters denoted a which present the average dependence among the

repeated observations across subjects.

There are various working correlation structures, namely, independence, exchangeable,
AR(1), m-dependent and unspecified. The next section discusses the independence,

exchangeable and AR(1) structures.

Independence Structure

This structure assumes that R;(e) = I an nxn idenity matrix, an equaivalence to an
assumption that data is not correlated. Howbeit, the assumption seems illogical with
longitudinal data where correlation can not be ruled out. It is proposed that this structure
leads to loss of efficiency with binary outcomes, but has an advantage to models that

include time varying covariates.

Exchangable Structure
It assumes that all the correlations in R are the same. It specifies that R;(a) = p, an

equivalence to compound symmetry in CPMs.

AR(2) structure

In this structure, the within-subject correlation over time is an exponential function

of the lag. It is denoted as R;(a) = pV~'l.  With the order of the time lag, and
dependence on one term , the correlations tend to decline.

Now parameters estimation in generalised estimation equations is presented.
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2.14 Parameter Estimation in GEE models

In order to estimate parameters in GEEs, let B; be an n x n diagonal matrix with
V (u;;) as the jth diagonal element. Also let R;(a) nxn, be the the working correlation
matrix for subject i. The associated working variance-covariance matrix for yi is
defined as, proposed by Liang and Zeger (1986).

V(a) = 0B;"/*R;(a)B;'*

To find the estimates for B, one uses solutions to the equation,

N

D LV@I - p) =0

i=1

where @ is a consistent estimator of @ and Z; = a;; . The above formula is just an

extension to estimation equation in GLM but now for correlated longitudinal data. The
equation depends only on mean of y; and its variance, thus the associated solutions are

called quasi-likelihood estimates.

Having reviwed the basics for survival data analysis and longitudinal methods, it is

important to extend to joint modelling process.

2.15 Joint Modelling for Longitudinal and Survival data

Here, the interest is on building a model that takes into account all three aspects namely,
longitudinal data, survival data and competing risks. In the first place an approach that
jointly takes into account the survival and longitudinal data without the competing risks
data is presented. In the course, reasons for adopting joint models than the seperate
methods of longitudinal and survival data are also discussed. Later, an extension will

be made, to introduce joint models in the competing risks settings.
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2.15.1 Basic Nature of Joint Models

The extended Cox regression model may take account of longitudinal data and survival
data, but with limitations as previously observed. The longitudinal markers and the
time-to-event outcomes in survival data, may be interrelated, suggesting the
dependence. Under extended Cox regression model, only the exogenous covariates are
taken care of, but not the endogenous. Also under time-dependent Cox model it is
postulated that the value of the longitudinal outcome remains constant between the
observed times. Assumption which are not valid for time endogenous covariates. In
order to illustrate the whole idea behind joint modelling, an example is given by

(Rizopoulos, 2012), in Figure 4.

1 1 1 1
Hazard Funchon
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o
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Longitudinal Process

L50005101520

Time

Figure 4: An intuitive idea of joint models.

In Figure 4, the bold line in the upper part of the figure shows the instantaneous rate of
failure (hazard). The lower part shows a faint line that represents the longitudinal
process. The starred line in longitudinal process represents the extended-Cox
approximation of the longitudinal trajectory. From Figure 4, one can tell how the hazard

function is associated with the longitudinal process, suggesting the dependence
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between the longitudinal process and survival process in time. The blue line indicates
an assumption under time-dependent Cox model which posits that the value of time
dependent covariates remain constant between the visits, yet the line is staggered in the

figure.

Modelling the longitudinal outcome with Cox models seperately, will lead to an
introduction of errors in the estimation of the longitudinal process if the two processes
are associated . This is where, the joint modelling of the longitudinal and survival data
comes in for it takes into account both the exogenous and endogenous time-dependent

covariates.

However, in the absence of correlation between longitudinal and survival outcomes,
each outcome can be analysed separately (Marchenko, 2016) using the separate
methods. Joint modelling of longitudinal and time-to-event data is an area of increasing
research, which allows the simultaneous modelling of a longitudinal (repeatedly
measured over time) outcome such as weekly biomarker measurements, and a time-to-
event (survival) outcome such as time to death (Sudell et al., 2016). The model is a
combination of longitudinal and survival submodels that are linked using an association

structure that quantifies the relationship between the outcomes of interest.

There are various forms to joint modelling approach of longitudinal and survival data.
The basic joint model which consists of one longitudinal and one survival outcome was
introduced by Self and Pawitan (1992), further work was done by DeGruttola and Tu
(1994), Tsiatis et al. (1995), Faucett and Thomas (1996) and Wulfsohn and Tsiatis

(1997). Also, Taylor et al. (2005), Garre et al. (2008), Yu et al. (2008), Proust-Lima
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and Taylor (2009) and Rizopoulos (2011) considered the joint modelling framework to
derive individualized predictions for a longitudinal and a survival outcome that are
updated at each new visit. However, in this project the focus is on joint models by
Rizopoulus (2012) whose focus is on individual’s survival. In the process, submodel
specifics to joint modelling, likelihood functions, parameter estimation, and underlining
statistical inference are introduced. In order to be in line with project objectives, an
extension will be made to competing risks settings. Before introducing the submodels,

here are reasons for joint modelling.

2.16 Why Joint Modelling of Longitudinal and Survival Data?

Longitudinal measures are commonly incomplete or may be prone to measurement
errors. As the longitudinal covariates are measured with errors, there is a requirement
for more complex analysis than one that treats covariates as fixed markers in survival
models. The inclusion of raw longitudinal measurements in the survival analysis leads
to bias (Prentice, 1982). Studies on joint models have been proposed to solve
difficulties in Cox proportional hazard model with time-dependent covariates, which
are possibly missing at some event times or subject to substantial measurement error
(Brown & Ibrahim, 2003). In other cases, undertaking a joint model that evaluates both
longitudinal and survival data simulteneously, reduces biases and improve precision
over simpler approaches (Henderson et al.,2000). For example, if a particular drug
reduces the hazard of a particular disease by 30%, then a joint model may lead to an
estimated hazard ratio of 0.75, whereas a conventional model (eg, a Cox model ) that
does not incorporate the longitudinal data into the analysis may yield a hazard ratio of

0.80.
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In this case, one says that the estimate based on the joint model is less biased than the
Cox model estimate because 0.75 is closer to the true hazard ratio of 0.70 (lbrahim,
Chu, & Chen, 2010). Thus joint models provide efficient estimates of the treatment
effects on both markers and on time to event of interest. When the longitudinal marker
is correlated with a survival outcome, joint modeling framework shows superiority over

modeling the two processes separately (Liu, 2016).

Often, longitudinal and survival data are collected together, hence it may be important
to investigate the relationship between the serial biomarker and event of interest. A
paper by Andrinopoulou (2014) suggests that joint models are an appropriate statistical
tool for assessing the progression of serial biomarkers accounting for patients drop-out
due to reasons associated with the study. Next are models involved in joint modelling

of longitudinal and survival data.

2.17 Submodels in Joint Modelling

As highlighted in section 2.1, joint model is a combination of longitudinal and survival
submodels that are linked using an association structure that quantifies the relationship
between the outcomes of interest. The model in this project is based on proposition by
Rizopolous (2012). Let T;" be the true event time for the i-th subject , and let T; be the
observed event time, where T; = min(T}", C;), where C; is the censoring time. Let §; =
I(T] < C)), i.e. §; is unity for the true event. Let also assume that m;(t) is true or
unobserved value of the longitudinal marker at time t. Then y;(t) is the observed value
of the time dependent covariate at time t , and y;;(t) = {y;(t;;).j = 1,2,...,n;}. The
aim is to associate the true unobserved longitudinal outcome m;(t) with the hazard of

an event.
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Survival Submodel

As stated under extended time dependent Cox regression model, the standard relative

risk model is defined as :

hi (| M) = ho (D) exp(yTw; + a(m;(1)). 1)

Where M;(t) = {m;(s), 0 < s < t} is longitudinal history of the unobserved, h,(t)
is the baseline hazard , and w; is a vector of baseline covariates. a quantifies the
strength of the association between the marker and the risk of an event / the effect of
underlying longitudinal outcome to the risk for an event. Model regression coefficients
are interpreted as seen in previous sections. exp(y;) denotes the hazards ratio from one
unit increase in j-th covariate, exp(a) denotes relative increase in the risk of an event

at time t resulting from one unit increase in m;(t).

In survival analysis, it is important to consider all history for the covariate, and not just
avalue m;(t). The survival function depends on full history of the marker. The survival

function is:

Si(t|m (1)) = exp{— fot ho() exp(yTw; + a(m;(t)) ds}.

In literature , Li et al. (2008), suggests that the baseline hazard is unspecified, however,
Hsieh et al.(2006) suggested that to avoid misspecification of the underlying parametric
distribution of the survival times which in turn leads to under-estimation of standard
errors of parameter estimates in the joint model settings, it is imperative to have it
specified, using parametric forms as seen in section 2.8. However, it is advisable to
use a more flexible form of model for the baseline hazard function. Here, are two

possible forms for baseline hazard function by Rizopoulos (2012).
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e Regression spline model

In this model, the log baseline hazard function is given as:

m
log ho(6) = ko + ) kaBa (t,0)
d

where kT = (ko, kq,..., k) are the spline coefficients, q denotes the degree of the B-
splines basis function B(.) proposed by de Boor (1978) and the m = m + q — 1 where
m is the number of interior knots.

e Piece-wise Constant model

In this model, the baseline function, takes the form,

ho(t) = T Eql (Voo <t < V),

where 0 = v, < v, < v, <...< Vg, apartition of time scale with v, the largest than

the largest observed time, and €, the value of the hazard in the interval (v4_q, v4].

In both models , as the number of knots increases, the specification of the hazard
becomes more flexible. In both models, it is important to avoid overfitting and keep
balance between bias and variance. However, there is no ideal strategy to achieve this,
still Harrel (2001) gives a standard rule of thumb based on keeping the total number of

parameters between 1/10 and 1/20 of the number of events in the sample.

e ch-Laplace
Under this method of specifying the baseline hazard, fully exponential Laplace
approximation is used for integration over the random effects. The method is suitable
where the subject specific longitudinal profiles are nonlinear and are modelled using

higher dimensional random effects structures.
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Longitudinal Submodel
The previous relative risk submodel, uses the unobserved longitudinal value m;(t). In
order to determine the effect of the longitudinal outcome on the risk of an event, it is
important to have m;(t) estimated and that the complete true longitudinal history
M ;(t) is reconstructed. Our focus is on continuous longitudinal markers, and the
mixed-effect regression model is given as:
yi(t) = m(t) + &(t)

= BXT (1) + Z[ ()b; + &(t), where m;(t) = BXT (t) + Z[ (t)b; )
where X7 is the design vector of fixed coefficients g , and Z] is a design vetor for
random effects b;. This vector b; is a latent random variable that can be interpreted
as subject specific effects of Z] (t), and ¢;(t) are random errors that are assumed to be

independent and normally distributed with mean zero and variance &2, i.e

&;(t)~N(0,68%I,), forall t = 0.

It is also assumed that &;(t) and b; are independent. This vector b;, follows the same
distribution and assumptions as seen in section 3.1, b;~N(0,D) and accounts for
association between the longitudinal and the event processes, and the correlation

between the repeated measurements in the longitudinal outcome.

The joint model allows to settle that the longitudinal markers are a function of true
unbserved longitudinal value m;(t) and some error, an attribute absent in time-
dependent Cox model. In general, the joint model is given as a piece-wise function of
equations (1) and (27) as shown below:

yi(®) =m;(t) + &(t) = X;(O)TB + Z,(t)Tb; + & (t) longitudinal submodel
hi(t| M (6)) = ho(D) exp(yTw; + a(m;(t))  survival submodel
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2.18 Parameter Estimation in the Joint Model

In separate methods of analysis for both longitudinal and survival data, maximum
likelihood estimation procedures are used to estimate model parameters. In joint
modelling settings, the same approach of maximum likelihood estimation is applied by
Rizopoulos (2012) to approaximate model parameters. Prior to estimation, the
likelihood formulation in the joint modelling process, and estimation process are

discussed.

2.18.1 Likelihood Function in the Joint Model
As previously specified in section 2.17 under the longitudinal submodel of the joint
model, b; account for association between the failure process and the repeated
longitudinal observations for the outcome variable. The vector of random effects also

account for correlation between the repeated longitudinal measurements.

In the joint likelihood formulation of longitudinal and survival data (T}, 8;,y;), the
survival and longitudinal processes are assumed to be conditionally independent given
the vector of random effects b;. The model also posits that the repeated measurements
of the longitudinal outcome are independent of each other. Under above assumptions,

thus

p(T;, 6i,yi b, 6;) = p((T;, 6; |b;, 6)p(y; |by, 6;) and

p(y; |b;,0;) = HP(YU |b:)
Jj

where 8 = (6{,67,6;)" denotes the parameter vector for the event time outcome, the

longitudinal outcomes and the random effects variance-covariance matrix respectively.
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Thus, the joint likelihood contribution for the i®" subject as proposed by Tsiatis and

Davidian (2004) is :
p(T;, 64, yi;0;) = fP(Ti, i, ¥i, bi ; 6;)db;

p(Ti, 81,y 6:) = [ p(ilb)p(Ti, 6ilbs; 61, B) p(by) db;
= f {(h(T12eT; 0)%s(Tae (s 00} || [ (vt [bis 6,) | p(b) b
J

where b; explains the interdependencies, and p(.) is the probability density function
and S;(t|b;) = exp(— fot ho(s) exp(yTw; + a(m;(s))ds is the survival function

which depends on the whole longitudinal history. Also the product
1_[ p(yi(t:)) |bi; 6,) p(by)
j

Il viX; B—Z;b; I

—n;
— 2y 5+ _
= (2m6°) 2 exp{ 252

}

b," Db,

_9 _1
X (2m) 2 det(D) zexp(— >

)

where g, denotes the dimensionality of the random effects vector, and ||. |l denotes

Euclidean vector norm.

The joint log-likelihood function with respect to 6 is given as:

1(6)

= Zlogf{h(TilMi(Ti); 0)%iS(T;|M;(T,); 6)} HP(}’i(tij) |bi; 6,)|p(b;) db;
i=1 ]

The maximization of this log likelihhod function, demands the optimization algorithms

and numerical integration techniques to be applied. The existence of integrals in the
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random effects, and the survival function that formulate the joint likelihood , result in
no closed form solution, since it may be of high dimension hence approximated
numerically. Standard numerical integration techniques such as Monte Carlo, Gausian
quadrature, Laplace approximation and Expectation-Maximization techniques are
applied. The latter receives more preference in literature than the others. As decribed
by Wulfsohn and Tsiatis (1997), E-M algorithm intuitively involves treating the random
effects as missing data, where in Expectation step, the missing data are filled, and the
log-likelihood function of the observed data is replaced with a surrogate function, and
maximization step where the surrogate function is maximized. Recently, Rizopoulos et
al (2009) introduced a hybrid algorithm for maximazation of log likelihood which start

with EM and continue with quasi-Newton (direct maximization).

2.18.2 Random Effects Estimation
In joint modelling, it is also important to consider estimation of subject-specific effects
on their outcomes. The random effects b; are estimated using Bayes Theory. As
introduced by Rizopoulos (2012), assuming p(b;, 0) as the posterior distribution, and
p(T;, 8| bi; O)p(vi(ti;) |bi; 0) as conditional likelihood part, the condition posterior
distribution of b; is :

p(Ty, 8:1bs; (i (t;) |bi; 0)pwis 0)
p(Ti,6:,y1,0)

p(bi|T;, 6,y ;0) =
o« p((T;, 8;1bi; O)p(yvi(ti;) |bi; €)p(bi; )

This has no closed form solution, and numerical methods are applied to approximate
the random effects. Standard summary measures for the posterior distribution are given

as:
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mean: b, = f b; p(b;|T;, 83, y; ; 0)db;

mode: b, = argmax,(log p(b|T;, 8, y;;6)
The impressive part about this distribution is that as the number of repeated

longitudinal measurements increases , the distribution converges to normal distribution.

2.19 Competing Risks Joint Models

As seen in section 2.9, there are situtions when apart from an event of interest, there
may be competing risks. In this section, an extension is made to standard joint model
for longitudinal and survival data, to accomodate the competing risks settings. Though,
joint modelling apparoach has been an increasing area of research, much of the research
on joint modelling of longitudinal and survival data have been focused on data with a
single event time and a single mode of failure, combined with an assumption of
independent censoring of event times (Tsiatis & Davidan, 2004). However, in some
situations interest lies with more than one possible cause of event or where the
censoring is informative. Some considerable works on joint modelling of longitudinal
and survival data in competing risks settings has been done by Gueorguieva et
al.,(2012) ; Andrinopoulou et al., (2014) and Proust-Lima et al., (2016), Hevia, (2014)
and others. In all work by above authors, cause- specific hazard regression and mixed
effect models are used, with an extension to the relative risk model for basic joint model

to account for competing risks.

The cause-specific model, postulates relative risks models for each of the competing
event type. The idea behind these models is to couple a cause- specific hazard model
for the continuous time-to-event process with a mixed-effects regression model for

the longitudinal outcome.
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Assuming one has K different event types, let T} , Tj5, . . ., Tjx be the true failure times
for K event types. Let T; be the observed failure time such that T; =
min(T},..., T, C;), where C; is the censoring time. Let D; takes the values
{0,1,2,..., g}, with §; = 0 indicating a censored event and §; = k showing that subject
i fails from the k — th type of failure, where k = 1,..., g. The relative risk model for
competing risks is now the cause-specific hazard model given as:
hie (8| V(D)) = hor (®) exp(vi"wi + ag (m; (1))
where w; vector of baseline covariates, m;(t) true value of the longitudinal marker
with M;(t) = {m;(t),0 < s < t}. The corresponding mixed effects model is given
by:
yi(t) = m(t) + &(t)

= BX{ (t) + Z{ (t)b; + &(t), b;~N(0,D) and &;(t)~N(0,5% I,,)
Parameter estimation is just the same as in the basic joint model, with some changes to
the likelihood formulation. For competing risks and longitudinal outcomes joint model,

the likelihood is given as:

p(T;, 6i1bi; 6, B)

1(6;=k)

= n[hok(Ti) exp(yi"w; + ar(m;(t))]
k=1

k Ti

xexp(= ). [ ho(s) exp(yiTwi + a(mi(s)) ds)
k=19

In the likelihood function, the baseline hazard is estimated using regression spline

method, as in section 4.3.
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2.19.1 Assessing Model Assumptions in competing risks joint model
In mixed-effects and cause-specific hazard models, there are methods that are used to
test model assumptions . In joint modelling alone, Rizopoulos (2012), propose the use
of multiple imputation residuals with the fixed visit times to validate the model
assumptions. However, when the longitudinal data, survival data, and competing risks
components are amalgamated, the assessment of model assumptions becomes

complicated.
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CHAPTER 3

METHODOLOGY

In the previous Chapter, methods for analysis of longitudinal and survival data that are
collected in biomedical studies are discussed. Next, is to apply the methods for joint
modelling of survival data with competing risks and repeated measures of longitudinal
data to real data. This section presents an overview of the data that are used for analysis
of this project. It also explains the statistical package that is used for the analysis of the

data.

3.1 Methods

The data used for this project is part of the primary dataset that was collected from a
randomized controlled trial that aimed at evaluating strategies to delay the emergency
of resistance to anti-malarial drugs in children by Malawi Liverpool Wellcome Trust
and College of Medicine in 2001 to 2003 (Bell et al., 2008). For the primary study,
written informed consent was required from the parent of each child recruited and the
study was explained in parent’s preferred language . The study protocol was approved
by ethics committees of the College of Medicine, University of Malawi, and Liverpool

School of Tropical Medicine.

The study primarily targeted children aged 12 to 60 months of age, weight > 6 kg, no
feature of severe malaria (event of interest) on enrollment, hemoglobin > 5.0g/dl was

measured using hamocue. The children were randomized to four treatment armsnamely,
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Sulfadoxine-Pyrimethamine(SP),Chloroquine(CQ) + Sulfadoxine-Pyrimethamine(SP),
Amodiaquine(AQ) + Sulfadoxine-Pyrimethamine(SP) and Artesunate (ART) +
Sulfadoxine-Pyrimethamine (SP) and followed up for a period of six weeks.

The children were recruited at, and followed up from, Chileka Health Centre which is
about 19 kilometers from Queen Elizabeth Central Hospital (QECH), and serves all the

immediate needs of the local population, referring major problems to QECH.

All children were also required to provide venous and capillary blood samples on
assessment days for parasite microscopy. From the blood samples taken from the
children, biomarkers such as hemoglobin, white cell count, red blood cell count,
platelets , creatinine and Bilirubin were examined in full blood count. Children were
considered pure, with P. falciparum parasitaemia parasite density between 2000 to 200
000 parasites per ul. Children were removed from the primary study after enrolment
if their full blood count showed severe anaemia, that is hemoglobin level less than 5
g/dl. On the other hand, during follow-up withdrawal was based on adverse reactions

to the randomised drug, protocol violation and consent withdrawal.

The study was a double blinded trial as all members of study team and patients were
uninformed of study treatments allocation. The patients were assessed on days O, 7,
14, 28 and 42 and any other day if unwell. In order to obtain this data, one of the
supervisors who was part of the study team had rights to share the data for academic

purposes and other use.
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3.2 Outcomes of Interest

For a period of two years, the study recruited 500 children in all treatment arms.
However in this project, data that was collected in 2001 were used, which consist of
101 children. The study managed to collect baseline characteristics of children such as
age in months, sex, and body weight in kilograms(kg). During follow up, the repeated
longitudinal measurements for hemoglobin and parasite counts were recorded. This
study uses longitudinal outcomes of hemoglobin level, collected on days, 0,7, 14 , 28,

and 42 and parasites counts recorded on same visit times.

Time to severe malaria/ treatment failure was an outcome of interest, in the presence
of a competing risk of withdrawal from the study . In the study, withdrawal was due to
adverse reaction to the drugs used, protocol violation and consent withdrawal as a
competing risk for severe malaria. All the children that were withdrawn on above
grounds, were considered withdrawn on reasons associated with the study in this
project. Status indicator for subjects that dropped out of the study from other unknown

reasons, loss to follow up (censored), severe malaria, and withdrawal was defined.

3.3 Statistical Analysis

The data for this project were analyzed using a statistical package R version 3.5.1.
Firstly, descriptive statistics for baseline covariates and other biomarkers were
presented. Then seperately, longitudinal mixed-effects models for longitudinal
outcomes, hemoglobin and parasite counts were applied to this data set, leaving aside

the survival models.
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The next models are competing risks models where two different failures of severe
malaria and withdrawal were taken into account, by including the baseline covariates.
Finally, in order to meet the objectives of the study, joint models were applied to
competing risks data. Since there were two longitudinal outcomes, they could not be
included in the joint model at the same time. As a result, models were fitted for each

of the repeated longitudinal outcomes.

3.3.1 Mixed-effects Model for Real Data
In this case, two separate mixed effects models of hemoglobin and parasites counts with
fixed and random effects were considered. Let y;, ; and yp ; denote the hemoglobin level

and parasite counts for the i-th individual, i = 1, ..., n. Then

Yhi = Bno + Bnisex; + Pnz age; + Bnszweight; + By 4 time; + By, 5 treat; +

broi + en, (3)

Yp,i = Bpo + Bp1Sex; + Ppyage; + Ppsweight; + Bp 4 time; + Py s treat; +

bpoi + ep, (4)

where sex, age, weight, time, and treatment are baseline covariates, Sy, 0, Br1, fnz2 .
Br3 . Brna, Brsare coefficients for baseline covariates respectively, and by, o; and ey, ;

are random effect and errror terms.

The models above are for longitudinal biomarker hemoglobin and parasite counts
respectively. The model for hemoglobin assume that sex, age, and weight, are fixed
effects, with random slope of subjects (patients). The model assumes that there may be
different longitudinal profiles from subject to subject. It also assumes that the random

effects and the random errors come from normal distribution, just as discussed
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previously. The model for estimated parasites counts includes the random-slope of

subjects, with the same underlying assumptions as the hemoglobin model.

3.3.2 Competing Risks Survival Model for Real Data
The competing risks survival models for the severe malaria and withdrawal with
baseline covariates, age, sex, treatment, weight, baseline hemoglobin level, and parasite
counts are the extended time-dependent cause-specific Cox models with no interaction

and given as:

hi sm (t) = hOsm (t) exp{ylsm,treati + Y2smQAge€; + ¥Y3smS€X; + V4smweighti + VSsmth

+ Yesmparasite0}

In this model, since severe malaria is an event of interest, withdrawal is treated as
censored in addition to usual censored observations, resulting from lost to follow-up.
In the similar manner, the extended time-dependent cause-specific model for
withdrawal, treating severe malaria and lost to follow-up as censored is given as:

hiwa i (€) = howa (8) exp{ yiwatreat; +yawaage; + Yswasex; + Yawaweight; +

Yswahb0 + YewaparasiteO }.

3.3.3 Joint Models for Real Data with Competing Risks and Longitudinal
Markers
In order to evaluate the relationship between the longitudinal marker and severe malaria
in the presence of competing risk of withdrawal, two separate joint models were
analyzed, each including a different longitudinal outcome. The longitudinal markers
of hemoglobin and parasite counts separated by the event type of severe malaria or

withdrawal were considered.
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This approach is recommended when focus is on survival outcome and allows the
evaluation of the impact of serial longitudinal markers. As detailed in section chapter
2, section 2.7 and subsection 2.10.1, the true submodels in joint modeling approach are
as follows:

e The longitudinal mixed effect submodel for hemoglobin.

Yhi = Bno + Bnisex; + Pz age; + Bnsweight; + By 4 time; + By, 5 treat; + by o

+ eh'i

e Survival submodels for hemoglobin

{hh,ism(t) = hh,Osm(t)EXp[Vh,lsmsexi + Yn2smage; + Yh3smWelght; + By sma treat; + ah,sm"lh,i(t)]
hpiwa(t) = hpowa(£)exp[Yriwasex; + Ynawaagei + Ynzwaweigh; + Bpwaa treat; + 0p yamp i ()]

Here my ;(t) is the true value of the longitudinal marker hemoglobin. Similary, the

longitudinal submodel for parasites is given as follows:

Yp,i = Bpo + Bpasex; + Bpyage; + Ppsweight; + Bp 4 time; + By 5 treat;

+ bpo; tep;

And the corresponding survival submodel are:

{hp,i sm (t) = hp,Osm (t)exp [Yp,lsmsexi + yp,Zsmagei + yp,ssmweighti + .Bp,sm4 treati + ap,smmp,i(t)]
hp,iwd (t) = hp,Owd (t)exp [yp,lwdsexi + Vp,deagei + yp,3wdweighi + Bp,wd4 treat; + ap,wdmp,i(t)]

where m,, ;(¢) is the true value of the longitudinal marker parasite counts.
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CHAPTER 4

RESULTS

This chapter presents the analysis results obtained in R version 3.5.1, after analyzing
the malaria data. Firstly, the chapter presents the basic descriptive statistics and then
the separate models for longitudinal and survival malaria data. In the last part of this
chapter, the joint models applied to real malaria data in the presence of competing risk
of withdrawal are presented followed by model comparision for the separate and

competing risks joint models.

4.1 Basic Descriptive Analysis

This study used data for 101 children. In this study, male children (57.4%) and female
children (42.6%) data were analyzed. The children were on average aged 2.22 years
(std=1.12) . The average body weight of the chidren was 11.03 kilograms and the
median follow-up time of 28 days. The different outcomes that were observed are
severe malaria (5.0%) and withdrawal (10.9%). In the competing risks analysis, severe
malaria was an event of interest and withdrawal as a competing risk. The remaining
children (84.2%) were censored in the analysis. The clinical biomarkers considered in
the analysis were parasites and hemoglobin level. The analysis used measurements
obtained on visit days 0, 7, 14, 28 and 42, for parasites and hemoglobin longitudinal
measurements. The results, report an average of six parasite count and an average of

9.38 g/dl hemoglobin level for the baseline data on day O.
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In Figure 5 are boxplot graphics for the two longitudinal biomarkers, parasites and
hemoglobin levels seperated by the event types, and barplots for treatment and sex

against the event type.
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Figure 5: Baseline explanatory variables classified by event type a patient experienced:

0 for censored event, 1 for severe malaria and 2 for withdrawal.
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For children that failed (experienced severe malaria), there were more males than
females and the same was the case for children who experienced withdrawal in the
course of the study. As can be observed in Figure 5, the median hemoglobin level for
children that experienced severe malaria is slightly the same as the medians for
hemoglobin levels of children that were censored and withdrawn from the study. It was

also observed that the medians number of parasites were the same in all event types.

On randomized treatment and severe malaria experinece, children that were randomized
to treatment arm “Chloroquine and Sulfadoxine-pyrimethamine (SP+ AQ)” had slightly
more cases of severe malaria than those in the other treatment arms that experienced
severe malaria. The numbers of patients that were withdrawn seemed to be slightly the

same in all treatment arms except in the Sulfadoxine-pyrimethamine group.

4.2 Linear Mixed-Effects Models
As highlighted previously, this section presents the linear mixed-effects model to
describe the evolution in time of longitudinal biomarkers, hemoglobin level and

parasites.

In Figure 6, subject-specific evolutions in time of the longitudinal biomarkers
hemoglobin level and parasites measurements are presented. From Figure 6, it was
observed that subjects showed similar variability in their longitudinal profiles for

hemoglobin and parasite in all treatment groups.
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Figure 6: The individual hemoglobin and parasites profiles over time in days seperated
by treatment that a patient received.

Next the mixed effects regression models for the malaria data are presented as stated

in section 3.3.1.

Table 2 summarizes the fitted mixed-effects regression models for hemoglobin and

parasites counts.
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From the table, the results suggest that time was statistically significant predictor of the
longitudinal scores of hemoglobin levels, with hemoglobin level increasing by 0.03
g/dl units for any passing day (s.e = 0.004). The intercept was also statistically
significant, implying that the value for hemoglobin level is 8.38 g/dl, when all

parameters are zero (s.e=0.65).

For the parasite count scores, the results show that the intercept was statistically
significant in predicting the parasite counts, with parasite counts of six parasites when
all other parameters are zero. The parasite counts for male patients increase by two
parasites than the parasite counts for female counterparts, however this result is not
statistically significant. The other variables, time , age and weight and treatment were

not statistically significant in the prediction of parasite counts.

67



Table 2: Fitted values for the linear mixed-effects models for the longitudinal

variables hemoglobin level, and parasite counts with standard deviations

(sde), and the p-values

Slope SE p-value
Hemoglobin
By,o (Intercept) 8.38 0.65 < 0.0001
By, (sexmale) -0.05 0.22 0.835
B, (age) 0.12 0.14 0.376
By, (weight) 0.06 0.07 0.409
By4 (time) 0.03 0.004 < 0.0001
Bus (SP+CQ) 0.19 0.31 0.549
Bus (SP+AQ) -0.13 0.32 0.695
Bus (SP+ART) 0.20 0.32 0.528
Random effects
by oi (Intercept) 0.89
Residual 1.10
Loglik: -623.9 BIC: 1306.7
Parasites counts
Bpo (Intercept) 5.61 2.30 0.016
Bp,1 (sexmale) 1.55 0.79 0.054
Bp2 (age) -0.46 0.49 0.345
Bps (weight) 0.08 0.24 0.744
Bp4 (time) -0.01 0.01 0.493
Bus (SP+CQ) 0.30 1.10 0.786
Bus (SP+AQ) -0.59 1.14 0.608
Bus (SP+ART) 0.65 1.13 0.568
Random effects
by, 0i (Intercept) 3.52
Residual 2.76
Loglik: -088.2 BIC: 2035.4
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4.3. Survival Competing Risks Models

In competing risks settings, the cumulative incidence curves for the two competing
events , severe malaria and withdrawal, accounting for failure times and the cause of
the failure were estimated. Graphically, the cumulative incidence functions provide an

insight of how the events of severe malaria and withdrawal evolve over time.
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Figure 7: Cumulative incidence curves for the two competing events, severe

malaria and withdrawal.

The cumulative incidence rates are higher for an event of withdrawal (study related
conditions) than cumulative incidence rate for severe malaria, with more withdrawal
events between day 0 and day 10.

In Table 3, parameter estimates and standard errors after fitting the cause-specific
hazard regression models for the two events, severe malaria and withdrawal are

presented.
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Table 3: Fitted values for the competing risk models.

Parameter Log(RR) SE p-value
CQ+SP 0.25 0.74 0.737
CQ+SP:CR 1.6e-15 1.05 1.000
AQ + SP 0.060 0.80 0.940
AQ + SP: CR 1.0e-15 1.13 1.000
ART+ SP -0.03 0.81 0.969
ART+ SP:CR 2.0e-15 1.15 1.000
Age -0.03 0.34 0.369
Age: CR 8.1le-16 0.49 1.000
Weight 0.212 0.16 0.189
Weight: CR -5.5e-16 0.23 1.000
Sexmale 0.49 0.56 0.377
Sexmale: CR -9.6e-16 0.79 1.000
HbO 0.09 0.17 0.596
HbO : CR -5.5e-16 0.24 1.000
Parasite0 0.04 0.05 0.416
Parasite0: CR -5.9e-17 0.07 1.000

Considering the results in Table 3, it was observed that the relative risk for severe
malaria increased by exp(0.21) = 1.24 (HR) for unit increase in body weight of the
child. Also, the risk of severe malaria is reduced by exp (- 0.03 ) = 0.73 (73.4%) in
older children than in younger children. However, these results are not statistically
significant in predicting the risk of severe malaria. The covariates: sex, and treatment
were not statistically significant in predicting the risk of severe malaria.

All the covariates were not statistically significant in predicting the hazard for the
competing risk event ° withdrawal’. It also observed that in the extended time-

dependent Cox model, the baseline longitudinal markers of hemoglobin and parasite
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counts showed no association with the hazards of severe malaria and the competing

event withdrawal

4.4 Joint Modelling and Competing risks Models

In order to evaluate the relationship between the longitudinal scores of parasite counts
and hemoglobin and the risk of severe malaria in the presence of competing risk
withdrawal, one of the recommended approaches is to plot the longitudinal scores of
parasites and hemoglobin seperated by event type that occured. This approach works
when an interest is on survival outcome, and allows evaluation of impact of

longitudinal outcome on survival (Hevia, 2014).

In Figure 8, the longitudinal progression of parasites count, and hemoglobin separated
by the event type that a patient experienced with the fitted lines are shown. The results
in Figure 8, showed that for the patients that experienced severe malaria, as the
parasites were clearing probably due to patients taking the randomised medication, the
hemoglobin levels for the patients were decreasing between day 0 and day 14. The
behaviour was different for patients that were withdrawn, who had their hemoglobin

level and parasite counts increasing between day 0 and day 10.
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Figure 8: Longitudinal scores showing the progression of hemoglobin , and parasite

variables separated by the event type.
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Table 4: Estimates for competing risks survival and longutudinal parasite count

processes in joint model settings

EVENT PROCESS

Parameter RR SE p-value
CQ+SP 2.33 1.23 0.491
CQ+SP:CR 1.00 1.14 0.999
AQ + SP 1.08 1.26 0.952
AQ + SP: CR 0.96 1.23 0.975
ART+ SP 1.08 1.28 0.953
ART+ SP:CR 0.99 1.20 0.998
Age 0.32 0.58 0.058
Age: CR 1.02 0.62 0.977
Weight 1.82 0.27 0.025
Weight: CR 0.99 0.26 0.988
Sexmale 6.75 0.93 0.040
Sexmale: CR 1.04 0.97 0.965
Assoct: 0.27 0.25 <0.0001
Assoct :CR 1.01 0.32 0.988
LONGITUDINAL PROCESS (parasite count)
Slope
Intercept 6.88 1.57 <0.0001
Time -0.03 0.01 0.028
Sexmale 2.04 0.61 0.001
Age -0.17 0.37 0.642
Weight -0.18 0.16 0.261
CQ+SP 0.94 0.85 0.268
AQ + SP -0.02 0.85 0.985
ART+ SP 1.38 0.88 0.116
Random effects
Intercept 3.68
Residual 2.97
Log-Lik -1134.2
BIC 2344.3
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Results in Table 4, indicated that in joint modelling setting of longitudinal biomarker
parasite count and the cause-specific hazard model processes, body weight of the child
was significantly associated with the risk of severe malaria. With any unit increase in
body weight, the relative hazard of severe malaria was increasing by 1.82 (HR). The
true parasite count was also strongly associated with the risk of severe malaria, such
that for a unit decrease in true parasite count, the relative hazard of severe malaria was
decreasing by 0.27 (27.3%). The sex of an individual was also statistically associated
with the risk of severe malaria, with relative risk of 6.76 (HR) higher in male patients
than in female counterparts. The covariates, including the true parasite counts were not
statistically significant in predicting the risk of withdrawal. On the longitudinal
process, sex was strongly associated with the longitudinal scores of parasite counts,
with two parasite counts more in male patients than in female patients. Also, with each
passing day, the parasite counts were decreasing by -0.03 counts, as time was strongly
associated with parasite counts. The intercept was also significant, with parasite counts

of seven when other parameters in the model equal to zero.

74



Table 5: Estimates for a fitted joint model for longitudinal marker hemoglobin
and competing risks survival processes
EVENT PROCESS

Parameter RR SE p-value
CQ+SP 3.13 1.15 0.322
CQ+SP:CR 1.02 1.20 0.984
AQ + SP 1.88 1.22 0.607
AQ + SP: CR 1.01 1.31 0.996
ART+ SP 2.72 1.17 0.392
ART+ SP:CR 0.97 1.26 0.982
Age 0.91 0.53 0.859
Age: CR 0.96 0.60 0.948
Weight 1.63 0.32 0.124
Weight: CR 1.02 0.22 0.940
Sexmale 2.20 0.80 0.328
Sexmale: CR 1.04 0.88 0.961
Assoct: 0.06 1.26 0.029
Assoct :CR 0.98 0.78 0.982

LONGITUDINAL PROCESS (hemoglobin level)

Slope
Intercept 7.51 0.76 <0.0001
Time 0.02 0.01 <0.0001
Sexmale 0.08 0.24 0.752
Age 0.11 0.13 0.383
Weight 0.12 0.07 0.067
CQ+SP 0.25 0.30 0.406
AQ + SP -0.12 0.31 0.704
ART+ SP 0.30 0.32 0.352
Random effects
Intercept 0.86
Residual 1.20
Log-Lik -767.13
BIC 1709.6
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Results in Table 5, indicated that the covariates, age, sex, and weight were not
statistically significant in predicting the longitudinal hemoglobin scores. However, time
and the intercept were statistically significant. With any passing day, the hemoglobin
scores increase by 0.02 g/ul adjusting for other variables in the model. Also, without all
other covariates, the hemoglobin level had a value of 7.51 g/ul. On competing risks
survival process, all covariates were not statistically significant in predicting the risks
of both severe malaria and withdrawal. In this setting, only the true hemoglobin level
was significant in predicting the hazard of severe malaria, where the relative risk of
severe malaria was reduced by 0.06 (6.0%) for a unit change in true hemoglobin level.
The results also suggest that much of the variation was not resulting from subjects, as

is indicated by the residuals.

4.5 Model Comparison

As shown in Table 2, Table 3, Table 4, and Table 5 of previous sections, it was
observed that the separate linear mixed-effect model for parasite, only the intercept was
associated with parasite counts. However, in the joint model process, the longitudinal
process showed that the intercept, time, and sex were significantly associated with the
longitudinal scores of parasite counts. Moreover, the estimates for all covariates had
smaller standard errors in the joint model longitudinal process of parasite counts than
in the separate mixed-effect parasite model. On the separate cause-specific Cox model,
no variable was found to be significantly associated with the risks of severe malaria and
withdrawal. To the contrary, in the joint model setting, the true parasite count was
significantly associated with the risk of severe malaria in the presence of withdrawal.
However, the coefficient estimates in the separate model had reduced standard errors

than in the event process of the joint model.
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The separate mixed-effect model for the hemoglobin scores, had time and the intercept
strongly associated with the longitudinal marker hemoglobin. In the joint model setting,
the same was the case. However, the estimates had small standard errors in the seperate
models than the joint model setting. For the competing risks models, the true
hemoglobin value was significant in the joint modelling setting. There was no covariate
that was significant in separate cause-specific hazard model. The results also suggested
elevated standard errors for the estimates in the joint model estimates for the survival

process.

In order to compare the models, the log-likelihood estimates were used. The separate
hemoglobin longitudinal model, had the log- likelihood -623.91, and the joint model
had the log-likelihood estimate of -767.13, indicating that the separate model had the
better fit to the data than the joint model. Also for the parasite count model, the separate
model had log- likelihood of -988.24 where as the joint model had the log likelihood
estimate -1134.2, thus the separate model preferable than the competing risks joint
model. The same conclusion was reached, when estimates for Bayesian Information
Criteria were used for the models. The choice of seperate model is also attributed to
small standard errors in the separate models than the joint models, as models with small
standard errors are preferable than models with large standard errors (McCrink et al.,

2011).
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CHAPTER 5

DISCUSSION

In the analysis of this data, for the mixed-effects model for hemoglobin level, time was
significant in determining the hemoglobin level for each passing day. The increase in
hemoglobin level as time passes could be due to clearence of parasites, hence reducing
their attack of the red blood cells. Normally the Plasmodium falciparum survives up to
four days in the host cells (White, 2017). In the longitudinal model for parasite count,
none of the covariates considered showed significant results. This is contrary to
observations in biomedical studies where in parasite clearence curve, time shows to be

significant (White,2011).

For the survival processes alone in time-dependent Cox model, none of the covariates
considered were associated with the risk processes. This suggested that when analyzing
this data these covariates could not be considered. However in a different study, for
malaria, age was found to be significantly associated with the risk of severe malaria,
with higher odds of malaria in younger children (Nyirakanani et al.,2018), which
suggested need to categorise age variable. In all risk models, no covariate was
associated with the risk of withdrawal. This could be the case as withdrawal conditions

might not be clinically associated the covariates used in this study.
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The analysis revealed that when joint model of parasite count was fitted, body weight,
sex and true parasite count were associated with the risk of severe malaria. The study
found that the risk of severe malaria increased with an increase in body weight. This
result was different from some work in literature where the higher parasitological
response is expected to be higher in the underweight children than the overweight
children (Djimde et al., 2019). This suggests need to categorize body weight when
analysing malaria data. The higher risk in male children than female children could be
due to more cases of male participants in the study resulting in slightly increased cases
of severe malaria in males than in children. The significant result between true parasite
count and risk of severe malaria is an effect traditionally presented in medicine, that as
the parasite counts decrease, the risk of severe malaria also decreases as patients take
the randomised drugs and have the hemoglobin levels increasing. There was also an
improvement in the longitudinal process of parasite counts as time was statistically
significant with a reduction in parasite count as time passed. This is what is clinically
expected in biomedical studies of malaria. The parasite counts were higher in male
children than in female children. This could be the case possibly due to more males in
the study than females participants, as there is no biological association between the

parasite count and gender of children (Nyirakanani et al.,2018).

For the joint model of hemoglobin level, in the risk process, only the true hemoglobin
level was associated with the risk of severe malaria. For any unit change in hemoglobin
level, the relative risk of severe malaria decreased. This could be the case due to
reduction in the parasite counts as days passed. This could result into more hemoglobin
levels hence reduced risk of severe malaria as work by Lombardo et al., (2017) yielded

the same results. In the longitudinal process, time was also statistically significant with
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increased hemoglobin level as time passed. The possibility in clinical studies is that
time has detrimental effect on parasite count hence reduced attack of Parasitaemia

falciparum on red blood cells.

For this data in general, the separate models seemed to be better to perform the analysis
than the joint models with competing risks. This is attributed to lack of association
between the risk processes and the baseline longitudinal markers in the time-dependent
Cox models. Smaller standard errors for the seperate models also contributed to the
choice of seperate models as models with small standard errors are preffered to models
with large standard errors (Nguti et al., 2005). However, in literature, joint models
considering competing risks by Hevia (2014), Hickey et al., (2017), and Andrinopoulou
et al., (2014, 2017) were preffered for analysis of data.The choice was clear as there
were associations between the longitudinal markers of interest in each study and the
event or survival procesess in seperate time-dependent Cox models. In the work by
Hevia (2014), the joint model had smaller standard errors than the seperate model,

hence giving the joint models preference.
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CHAPTER 6

CONCLUSION, RECOMMENDATIONS, AND LIMITATIONS

This chapter gives the summary of the results obtained in the analysis of malaria data
using joint models with competing risks data. In it recommendations and possible

limitations of the study are also included.

6.1 Conclusion

In clinical studies, it is common to collect survival data and longitudinal data. When an
interest lies on association between the survival process and longitudinal markers, joint
models are applied to the analysis of such data. From the results, it was observed that
when analyzing the longitudinal markers of hemoglobin and parasite count in mixed
effects models, time should be considered as it is statistically significant in predicting
the scores of hemoglobin and parasite count. In light of these results, covariates
treatment, sex, weight, age, parasite count and hemoglobin level may not be considered
in seperate time-dependent Cox model. However, grouping weight and age may give
some insight in the risk process as was seen in some literature. As higlighted in the joint
models, it is important to consider both true parasite counts and true hemoglobin levels

when assessing the risk of severe malaria in the presence of competing risk withdrawal.

When analysing the longitudinal malaria outcomes together with competing risks
survival malaria outcomes in randomized controlled trials for malaria studies, seperate

methods for longitudinal data and survival data can be used when there is no association
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between baseline parasite count, hemoglobin level and the risks of severe malaria and
withdrawal. However, joint models should only be considered when there is an
association between the parasite count, hemoglobin and events’ processes. Since there
was no association between the longitudinal and survival processes, then separate
models proved to be the better model fits to analyze these malaria outcomes data than
the joint models with competing risks as shown by estimates of Bayesian information

criteria.

6.2 Recommendations

In clinical studies for malaria, when longitudinal data and survival data are available,
and there is no association between the survival process and the longitudinal process,
then, the separate analysis of these data can be done. However, it is recommended that
where the association does exist, use of joint models should be considered. For this
malaria data, the use of separate models for longitudinal and competing risks survival
malaria outccomes as there is no association between the events’ process and
longitudinal process. It is also recommended that doing the same study with different
correlation levels between the survival and longitudinal outcomes, may improve the
results possibly using simulation. Exploring newly developed methods with possible
diagnostic methods may help to improve model selection procedures, and improve the

results.

6.3 Limitations

In biomedical studies, where statistical tools are used, further progress is needed in this
area of joint modelling of longitudinal data with competing risks survival data to

advance tools for better analysis, as the field is in its early developmental stages, and
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restricted in its application to biomedical studies. For instance, there is a need for
development of diagnostic methods for model validation, selection and comparison,
and also models that can include more than one longitudinal biomarkers of interest into

a single competing risks joint model.
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APPENDICES

CODES USED FOR ANALYSIS INR

PACKAGES USED

library(survival)
library(lattice)
library(splines)
library(foreign)
library(nlme4)
library(reshape2)
library(nlme)
library(JM)

library(cmprsk)

DESCRIPTIVES

summary(CMPDATAS$age)
summary(CMPDATAS$sex)/2
summary(CMPDATASstatus)
summary(CMPDATAS$parasite0)
summary(CMPDATA$hb0,CMPDATAS$parasite0)

BOXPLOTS

boxplot(parasite~status2, ylab = "parasite count"”, xlab = "Event type", main="parasite
Vs Event type"”, cex.main=0.9, cex.axis=0.7, las=1, ylim=c(0,14), data=RMW)

boxplot(hb~status2, ylab = "hemoglobin level", xlab = "Event type",
main="hemoglobin Vs Event type", cex.main=0.9, cex.axis=0.7, las=1, ylim=c(6,14),
data=RMW)

BAR PLOTS
attach(CMPDATA)
par(mfrow=c(1,3))

Tablel<- table(sex, status3)
barplot(Tablel, beside=T, legend.text = c(""female™, "male"), xlab="Event type", main
= "gender Vs event type", cex.main=0.9, cex.axis = 0.7)
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Table2<- table(treat, status3)

barplot(Table2, beside=T, legend.text = c("SP", "SP+CQ", "SP+AQ", "SP+ART"),
xlab="Event type", main = "treat Vs event type", cex.main=0.9, cex.axis = 0.7)

LONGITUDINAL PROFILES: USING PACKAGE: lattice

xyplot(parasite~obtime|treat, group= patient, data=RMW, xlab=" Time (Days) ",
ylab="parasite count”, col=1, type ="I", main = "individual parasite profile",
cex.main =0.1)

xyplot(hb~obtime|treat, group= patient, data=RMW, xlab=" Time (Days) ", ylab=
"hemoglobin level”, col=1, type = "I", main = "individual hemoglobin profile",
cex.main = 0.1)

LINEAR MIXED EFFECTS MODELS FOR PARASITES AND
HEMOGLOBIN

FITP<-Ime(parasite~ treat + sex + age + weight+ obtime, random = ~1|patient,data=
RMW)

FITH<-Ime(hb~ obtime + treat + sex + age + weight, random=~1|patient,
data=RMW)

summary(FITH)

intervals(FITH) // Obtain 95% CI for coef

SURVIVAL ANALYSIS

CUMULATIVE INCIDENCE CURVES: Using cmprsk package

CUM<-cuminc(ftime = time,fstatus = status,rho = 0,cencode = "censored")

par(mfrow=c(1,3))

plot(CUM,xlab="time in days", col=c(1,2))
COMPETING RISKS MODEL [ Cause-specific time-dependent Cox Model]

NCOMP<-coxph(Surv(time, status2)~(treat + sex + age + sex + weight + hb0 +
parasite0)*CR + strata(CR), data = CMPDATA)
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JOINT MODELS

xyplot(parasite ~ obtime | status, data = RMW, panel = function(X, y) { panel.
xyplot(x, y, grid = FALSE, type = c("p", "smooth"), col.line = "black™) },ylab =
"parasite count” xlab = "time in days", pch=16)

xyplot(hb ~ obtime | status, data = RMW, panel = function(x, y) { panel.xyplot(x, y,
grid = FALSE, type = c("p", "smooth"), col.line = "black™) }, ylab = "hemoglobin
level” xlab = "time in days", pch=16)

THE JOINT MODELS IN THE PRESENCE OF COMPETING RISKS

JOINTH<-jointModel(FITH, COMPCOX, timeVar = "obtime", method = "spline-PH-
aGH", CompRisk = TRUE, interFact = list(value=~CR, data= CMPDATA))

JOINTP<-jointModel(FITP, COMPCOX, timeVar = "obtime", method = "spline-PH-
aGH", CompRisk = TRUE, interFact = list(value=~CR, data= CMPDATA))

DATA OBJECTS IN THE PROJECT R FILE

BCOMP: This contains the fitted Extended Cox Model with baseline longitudinal
markers

FITH: Linear Mixed-effect Model for hemoglobin

FITP: Linear Mixed-effect Model for parasite

JCOX: Cox model used in the joint modelling

JOINTH: Hemoglobin Competing Risks Joint Model

JOINTP: Parasite Competing Risks Joint Model

CMPDATA: This is the competing risks Data used in the Analysis of this project

RMW: This is the Longitudinal Data for parasites and hemoglobin used in the
analysis
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