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ABSTRACT 

Biomedical studies may collect longitudinal and survival data in follow-up malaria 

studies. In randomized controlled trials in malaria interventional studies the 

longitudinal and survival data are analyzed separately (mixed-effect and Cox Models), 

yet the longitudinal outcomes may be important predictors in the survival outcomes.  

Standard methods for survival analysis, cannot be considered with such longitudinal 

outcomes. In such studies, survival process may also include multiple events 

(competing risks), implying that three blocks, survival, longitudinal and competing 

risks need to be considered in the analysis. In order to assess the association between 

the malaria longitudinal and the survival outcomes collected in biomedical studies, joint 

modelling framework was considered to combine the three blocks in the analysis. Joint 

models were also compared to separate models.  Different survival outcomes observed 

were severe malaria (4.95%), withdrawal (10.89%) and censored (84.16 %). The time-

dependent haemoglobin level  and parasite count were not associated with the risks of 

severe malaria and withdrawal in the extended-time dependent Cox model. The true 

longitudinal markers parasite counts and haemoglobin levels were associated with the 

risk of severe malaria (p <0.0001) and (p=0.029) respectively and had no effects on the  

risk of withdrawal in the joint models as these markers change with time. Generally the 

separate models were the best fit to the malaria dataset than the joint models due to lack 

of association between the survival outcomes and longitudinal outcomes in the cause-

specific time dependent hazard model.
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CHAPTER 1 

INTRODUCTION 

 

1.1Background  

Biomedical studies may collect repeated measurements of longitudinal data and time to 

event/events of interest data during follow-up. A typical example is the AIDS study 

where CD4 count and viral load are collected longitudinally and the time to AIDS or 

death is also monitored (Elashoff et al., 2008). Another example is in cancer studies 

where the longitudinal data and time to event data are collected for each subject. The 

longitudinal data such as circulating tumor cells, immune response to a vaccine, a 

genetic biomarker, or a health outcome are recorded (Ibrahim et al, 2010). Yet another 

example is  prostate cancer study, where patients are followed-up over time and during 

that period death or metastasis can occur.  In malaria studies, randomised blinded trials 

are carried out to compare efficacy, and safety of drugs and resistance of parasites. 

During follow-up, one of the measures of interest, may be time to fever resolution, time 

to parasite clearance, with possible longitudinal covariates like white blood cell count 

or red blood cell counts and changes in haemoglobin levels. 

 

In these follow-up studies various outcomes are possible. To analyze such data, there 

are methods for separate analysis of longitudinal data and survival data. For example, 

in survival data, survival methods correctly incorporate information from both censored 

and uncensored observations in estimating important model parameters. Early work in 

survival analysis dates back to 1958, where a non-parametric estimator of survival 
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function is proposed. Non-parametric methods such as Kaplan-Meier product-limit 

estimator and life tables are used to estimate the survival curves. Parametric methods  

such as Weibull, exponential and Log-normal and log–logistics are widely applied in 

survival data (Collet, 2003). In order to analyze the effects of covariates on time-to-

event, methods such as Cox proportion hazard model, and extended Cox model for 

time-dependent covariates are used. The problem with Cox model for analysis of 

survival data is that  it is only theoritically valid for exogenous time-varying covariates 

but not when studying biomarkers (endogeneous) and other patient parameters 

(Andrinopoulou, 2014). The reason behind this inadequacy of Cox model is that it 

assumes that from one visit to another, the marker’s level remains constant and that a 

sudden change in the levels occurs when the patients come for a visit, and this leads to 

a crude appromiximation about the path of the biomarker. Ignoring these special 

characteristics and fitting the extended Cox model, would result in bias for the 

estimated effect of a biomarker (Andrinopoulou, 2014). 

 

In cases, where there are more than one failures (competing risks), intepretation of 

survival probabilities has always been questionnable (Kleinbaum & Klein, 2005).  

There have always been problems in the analysis such as estimation of the relationship 

between covariates and rate of occurence of failures of specific types, study of 

interrelation between failure types under a specific set of study conditions and the 

estimation of failure rates for certain types of failure given the removal of the other 

failure types (Kalbfleisch & Prentice, 2002). Methods such as cause-specific Cox model 

and cumulative incidence curves have been developed and used  in such situations. A 

common assumption in all these models is that censoring is noninformative for survival 
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data with a single failure type, which is no longer applicable in presence of informative 

censoring. 

 

In longitudinal data, methods such as generalized mixed-effects regression models, 

Covariance pattern models, ANOVA, Generalized Estimating Equations (GEE) are 

used to analyze the repeated measurements with possible covariates (Hedeker & 

Gibbons, 2006). The impressive feature about these models is that of explicit account 

for the correlation within the measurements obtained from the same patients and can 

handle unequally spaced visit times (Andrinopoulou, 2014). A major challenge for 

analysis of  longitudinal outcomes is the fact that measurements for the outcomes are 

incomplete (missing). Missing data in longitudinal studies arise from a variety of 

reasons. The main concern in longitudinal analysis with missing data arises when there 

is an association between the longitudinal profile and the missing process. Mechanisms 

such as Missing Completely at Random (MCAR), Missing at Random (MAR) and 

Missing Not at Random (MNAR) are commonly encoutered in longitudinal studies 

(Andrinopoulou, 2014). However, in literature, methods for handling missing data in 

longitudinal settings are considered, including selection models, pattern mixture 

models and shared parameter models for discrete times (Molenberghs & Kenward, 

2007). Joint distribution methods applicable for continuous time  are applied to analyse 

the longitudinal and missing processes (MNAR) since in reality patients skip visits or 

dropout from the study. 

 

In biomedical studies that collect longitudinal data such as malaria studies, covariates 

can be important predictors of survival or some other time-to-event. In survival data 

analysis, censoring is assumed to be noninformative, yet  longitudinal response data is 
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affected by informative dropout, especially in cases with competing risks and also the 

inclusion of time-varying covariates in survival analysis. This suggests need to 

investigate the relationship between the longitudinal biomarkers and time to event of 

interest. Thus the aim of this project is to assess the relationship between longitudinal 

and competing risks  survival malaria outcomes using joint  models. 

 

1.2 Problem Statement 

Longitudinal and survival data collected together in biomedical studies are analyzed  

independently, regardless of any possibility of relationship  between these data (Ibrahim 

et al.,2010). As such, the methodologies for analysis are not sufficient for they do not 

account for other parameters, and the association between the two types of the data. 

Using separate methods and ignoring special features of longitudinal and survival data, 

may lead to underuse of potential variable information and lead to biased results and 

conclusion about treatment effects (Sudell et al.,2016). Hence, need for joint modelling 

approach to model the association between the two data sets. Also, many studies on 

joint modelling of longitudinal and survival data in literature analyze and model the 

data with one failure event but not much in presence of competing risks (multiple failure 

events). To add to the body of knowledge in this subject area, with an application to 

malaria data, this project is undertaken. 

 

1.3 Objective 

In particular the aim of the study is to  assess association between malaria longitudinal 

and competing risks survival outcomes using joint models. 
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1.3.1 Specific objectives 

Specifically for this project, the emphasis was on the following  objectives:  

 Investigate association between baseline covariates and longitudinal and 

survival malaria outcomes using separate models, and competing risks joint 

models.  

 Assess performance of joint models and  separate models for malaria  

longitudinal and competing risks survival outcomes in randomized controlled 

trial. 
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CHAPTER 2 

STATISTICAL BACKGROUND 

In this chapter,  an introduction of  two aspects that help  understand the joint modelling 

process of longitudinal and survival data are presented. In the first case, survival data 

and methods for analysis of such data are introduced. The second part of this chapter 

presents the longitudinal data and the statistical methods for the analysis of repeated 

measurements. These two blocks, lead to an introduction of joint models for  analysis 

of longitudinal and survival data even in competing risks settings. 

 

2.1 Survival Data  

Survival analysis is a collection of statistical procedures for data analysis, for which the 

outcome variable of interest is time until an event occurs (Singh & Mukhopadhyay, 

2011). Over the last few decades, since the World War II motivated the study in the 

reliability of the military equipment, the survival analysis has been a very important 

field of research . It studies the time until an event of particular interest occurs, and with 

it, it answers questions such as what kind of  treatment is better for a certain illness, or 

what variables have an influence in the recovery of a patients (Hevia, 2014). Initial 

studies on survival analysis had an interest on death as an event of interest. In modern 

world, survival data extend to time until onset of a disease, time until stock market 

crash, time until an equipment failure in engineering, time until earth quake and so on 

(Smith, 2002). The event of interest is usually called failure  and the variable is called 

failure time or survival time.   
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Survival analysis has become one of the most frequently used methods for analyzing 

data in disciplines ranging from medicine, epidemiology, and environmental health, to 

criminology, marketing, and astronomy (Lee & Go, 1997).  In oncological studies, time 

from diagnosis to death from any reason, time to tumor recurrence and the time from 

diagnosis to tumor-related death are of interest (Zwiener, Blettner, & Hommel, 2011). 

In business analytics, important outcomes such as time until a warranty claim, time 

from initial sales contact to a sale and time from employee hire to either termination or 

quit are analysed using survival techniques. Another example in clinical trials is time 

to treatment failure in TB patients, time until AIDS for HIV patients and time until  

cardiovascular death after some treatment intervention, (Elashoff, Li, & Li, 2008). 

 

More generally, biomedical studies have been a  root that inspires the biostatistics field. 

They provide data with specific features that need special caution when doing the 

analysis, and they keep coming up with situations where new statistical tools have to 

be developed in order to be able to handle them (Hevia, 2014). Due to increased 

biomedical research, survival data is more prevalent hence need for dedicated statistical 

methods for analysis of such data for better analysis results and action. For example,  in 

clinical trials, to compare survival times of patients who receive one or other of the  

treatment types, it is important to explore the relationship between the potential 

predictors to survival or hazard of an event of interest. The resulting estimates could be  

particularly useful in devising a treatment regimen and in counselling the patients about 

their prognosis (Collet, 2003). 

 

As shown above, survival data are common and collected in various fields. In this study 

the  focus is on application of survival analysis to biomedical fields. Another important 
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note on survival data  is that the data are collected in follow-up studies, where patients 

are followed until time when an event of interest occurs. In such studies not all subjects 

have the event of interest observed, such individuals are said to be censored. The 

following subsection presents  censoring concept as is  used in biomedical studies that 

collect survival data. 

 

 2.1.1  Censoring in Surviva   l Data 

In follow-up studies, not all subjects experience the event of interest. This may be due 

to loss to follow-up, or the study ends before the event of interest is observed. For these 

reasons, part of the event of interest still remains unobserved, and as such the event 

time is said to be censored. For example, suppose that a patient is recruited to a clinical 

trial, where the outcome of interest is time to death from a certain cause. Suppose that 

the patient moves to a different location or country and is no longer traced. The only 

information available on the survival experience of this patient is the last date on which 

he or she was known to be alive, which may be the last visit to the clinic. In such cases, 

the death for this individual will not be observed and his or her survival time is 

censored. 

 

Censoring is classified as left or right (when survival time is less or greater than the 

observation time). There is also interval censoring where time to event of interest is 

believed to occur between some time points. Censoring process can also be classified 

as informative or noninformative.  
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The distinction between informative censoring and noninformative censoring is that, 

the former occurs when subjects withdraw from the study with reasons related to the 

expected failure time while the latter, the reasons for drop-out are independent of the 

study. Censoring makes the survival data more skewed and as such standard statistical 

methods such as t-test, linear models  and others are not appropriate for this type of data 

(Collet, 2003). This skewness behaviour of survival data leads to specific and dedicated 

methods for analysis of survival data.   

 

In order to summarize survival data, it is required to define  two important functions. 

The following section presents two central functions of interest in the analysis of 

survival data. 

 

2.2  Important Functions in the Analysis of Survival Data 

In summarizing the survival data, there are two functions of central interest namely, the 

survival function and hazard function. These functions are therefore defined in the next 

sub-section. 

 

 2.2.1 Survival function 

Let  T be a non-negative random variable for event time. In survival analysis , a subject  

𝑖 is represented by the pair (𝑇𝑖 , ∝𝑖) where 𝑇𝑖 is the observed event time for subject 𝑖 

and 𝑇𝑖 = (𝑇, 𝐶𝑖)  with 𝐶𝑖 as the censoring time and ∝𝑖 as the censoring indictor with 

∝𝑖= 1 if censored and ∝𝑖= 0 otherwise. The survival function is defined as the 

probability of surviving time 𝑡 or probability that an event occurs after an instant 𝑡.  

Assuming that T is a continuous random variable, with F(t) as probability distribution 

of T, then  the survival function is defined  as:  
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𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑢) 𝑑𝑢
∞

𝑡
   for 𝑡 ≥ 0   

𝑓(. ) is the corresponding probability density function. This function is therefore used 

to represent the probability that an individual survives from the time origin to some 

time beyond  t. 

𝑆(𝑡) must be a decreasing function with 𝑆(0) = 1  and lim
𝑡→∞

𝑆(𝑡) = 0. In general, the 

function 𝑆(𝑡) provides useful summary information such as the median or quantile 

survival times. 

 

 2.2.2 Hazard function 

Another important function in survival analysis is the hazard function which expresses 

the risk or hazard of an event at some time 𝑡, and is obtained from probability that an 

individual fails at time 𝑡 conditional on having survived to that time with T lying in  the 

interval [𝑡, 𝑡 + 𝛿𝑡]. The hazard function is defined as:  

𝜆(𝑡) = lim
𝛿𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 ≥ 𝑡)

𝛿𝑡
     for 𝑡 > 0.   

Note that 𝜆(𝑡)𝛿𝑡 is the approximate probability that an individual fails in the interval  

 [𝑡, 𝑡 + 𝛿𝑡] conditional on individual having survived to time t. The hazard function is 

also called the  instantaneous rate of failure or intensity rate.  

 

The hazard function can be expressed in terms of survival function, likewise survival 

function can be expressed in terms of the instantaneous rate of failure function. Using 

the standard results in probability theory, the conditional probability of an event A 

given B is written as: 

𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
. 
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The conditional probability in  the hazard function can be written as: 

𝑃(𝑡≤𝑇<𝑡+𝛿𝑡)

𝑃(𝑇≥𝑡)
=

𝐹(𝑡+𝛿𝑡)−𝐹(𝑡)

𝑆(𝑡)
. 

The hazard function, will then be defined as: 

𝜆(𝑡) = lim
𝛿𝑡→0

(
𝐹(𝑡+𝛿𝑡)−𝐹(𝑡)

𝛿𝑡
)

1

𝑆(𝑡)
 , but lim

𝛿𝑡→0
(

𝐹(𝑡+𝛿𝑡)−𝐹(𝑡)

𝛿𝑡
) = 𝐹(𝑡)′ = 𝑓(𝑡) , thus  

𝜆(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
. 

From this relationship, it follows that: 

𝜆(𝑡) =
−𝑑(log (𝑆(𝑡))

𝑑𝑡
   and  𝑆(𝑡) = exp (− ∫ 𝜆(𝑠)

𝑡

0
𝑑𝑠 = exp (−Λ(t)) , where Λ(t) is the 

cumulative or integrated hazard. 

 

2.3  Methods for Analysis of Survival data 

The first step in the analysis of a set of survival data is to present the numerical or 

graphical summaries of the survival times for individuals in a particular group in terms 

of survival and hazard probabilities. Survival data are conveniently summarized 

through estimates of the survival function and hazard function.  This is achieved 

through the use of non-parametric, semi-parametric and parametric methods for 

analysis of survival data. In the  next sections, the focus is on describing these methods. 

 

 2.3.1 Non-parametric methods 

These methods are also called  distribution-free, because they do not require specific 

assumptions about the distribution of undelying survival times. The most well known 

functions for estimation of survival and hazard  functions are Kaplan-Meier , Nelson-

Aelen estimators and life tables. Other non-parametric methods for comparision of  
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groups of survival data will be introduced later. Here,  Kaplain-Meier and Nelson-Aelen 

estimators of survival and hazard functions are discussed. 

 

Kaplan-Meier Estimator 

This was proposed by Kaplan and Meier (1958). It is also called product-limit estimate 

of the survival function. The derivation of  Kaplan-Meier is done  using the following 

steps: Suppose that there are 𝑛 individuals with observed survival times 𝑡1 < 𝑡2 < 

𝑡3, . . . , <  𝑡𝑛. Some of these observations may be right-censored and there may be more 

than an individual with the same survival observed times. Let 𝑟𝑖 be those at risk of event 

at time 𝑡𝑖 and 𝑑𝑖 be those that have failed at 𝑡𝑖. The Kaplan-Meier estimator assumes 

that the distribution is discrete instead of continuous, with the events only occurring at 

these observed time points. The probability that an individual fails at 𝑡𝑖 is denoted 

𝜆̂(𝑡𝑖) =
𝑑𝑖

𝑟𝑖
 , as the estimated hazard at time 𝑡𝑖 and the corresponding estimated survival 

probability is given by:  𝑆̂(𝑡𝑖) =
𝑟𝑖−𝑑𝑖

𝑟𝑖
.   

Under the assumptions that censoring is non-informative and that individuals fail 

independently, the probability of surviving at any time 𝑡 can be written as the product 

of  the conditional probabilities: 

 𝑃(𝑇 > 𝑡) = 𝑃(𝑇 > 𝑡|𝑇 > 𝑡 − 1)𝑃(𝑇 > 𝑡 − 1) 

= 𝑃(𝑇 > 𝑡|𝑇 > 𝑡 − 1)𝑃(𝑇 > 𝑡 − 1|𝑇 > 𝑡 − 2) …,  

By repeating this method, the estimated survival function at any time t, is a Kaplan-

Meier survival estimator: 

𝑆̂(𝑡) = ∏ (
𝑟𝑖 − 𝑑𝑖

𝑟𝑖
)

𝑡𝑖≤𝑡
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A plot of the Kaplan-Meier is a step function in which the estimated survival 

probabilities are constant between adjacent event times and decrease at each event time. 

Breslow and Crowley (1974) and  Peterson (1977), proved the consistency of this 

estimator and had shown that  √𝑛(𝑆̂(𝑡) − 𝑆(𝑇)) converges in  law to Gaussian process 

with mean 0 and variance-covariance structure (Hevia, 2014). The variance for 𝑆̂(𝑡)  is 

estimated using Green’s formula, 

𝑉𝑎𝑟 (𝑆̂(𝑡)) = 𝑆̂(𝑡)2 ∑
𝑑𝑖

𝑟𝑖(𝑟𝑖 − 𝑑𝑖)𝑡𝑖≤𝑡
 

Nelson-Aalen estimator of survival function 

This is an altenative estimator of survival function which is based on the individual 

event times. It is obtained from an estimate of the cumulative hazard function. It is also 

known as Alt-shuler’s estimate. This was proposed by Bleslow (1972). 

𝑆̂ (𝑡) = exp(−Λ(𝑡)) = ∏ exp (−
𝑑𝑖

𝑟𝑖
)

𝑘

𝑖=1

 

with 𝑑𝑖 and 𝑟𝑖  defined as in the derivation of Kaplan Meier estimator. The estimator 

has shown to perform better than Kaplan-Meier especially with small samples. 

However, the estimates are  asymptotically equivalent particularly at the earlier survival 

times. 

Having introduced the Kaplan-Meier and Nelson-Aelen methods for estimating the 

survival probabilities, the non-parametric methods for comparing the survivor 

probabilities in different groups of survival data are now considered. 
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 2.3.2 Comparison of two groups of survival data 

In clinical trials , it is common to randomise subjects to different treatments under 

study. Survival experiences of patients in different groups may really differ suggesting 

the need to consider the treatments, or the differences may not be there in such that the 

observed differences are merely due to chance variation. In order to help distinguish 

between these two explanations, non-parametric methods are applied. The basic 

approach to compare two groups of survival data is to plot the corresponding estimates 

of the two survival functions on the same axis, and the resulting plot can be informative. 

This idea, is presented by (Collet, 2003) shown in  figure 1. 

 

Figure 1: Kaplan-Meier estimate of the survival functions comparing two groups of 

women turmours survival data:  positively stained (     ) and negatively stained (....). 

 

Figure 1 indicates that the survival function for women with negatively stained 

turmours is greater than that of women with positively stained turmors. This indicates 

that the result of staining may be a useful indicator in prognosis. However, the plot does 

not quantify the extent of  between-group differences.  As a result, non-parametric 

procedures such as  log-rank test , Wilcoxon test , Tarone-ware, Fleming’s Harrington, 

Cox’s F-test, and Gehan’s Generalized Wilcoxon are used. In this section, log-rank test 

and Wilcoxon test are considered.  
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The log-rank test 

Suppose there are two groups of survival data namely group1 and group2. Let 𝑡1 < 𝑡2 

< 𝑡3, . . . , <  𝑡𝑛 be ordered event times across the groups. At time 𝑡𝑖, denote number of 

individuals who fail in group1 be 𝑑1𝑖 and number of individuals that fail in group2 be 

𝑑2𝑖. Let  𝑛1𝑖 and 𝑛2𝑖 be individuals at risk at time 𝑡𝑖  in group1 and group2 respectively. 

Then 𝑛𝑖 is the total number of individuals at risk at time 𝑡𝑖 .  More information is 

summarized in Table 1. 

Table 1:  Number of events at the i-th event time in each of the two groups  

Group Number of events at time 𝒕𝒊 Number surviving 

beyond 𝒕𝒊 

Number at risk 

just before 𝒕𝒊 

1 𝑑1𝑖 𝑛1𝑖 − 𝑑1𝑖 𝑛1𝑖 

II 𝑑2𝑖 𝑛2𝑖 − 𝑑2𝑖 𝑛2𝑖 

Total 𝑑𝑖 𝑛𝑖 − 𝑑𝑖 𝑛𝑖 

 

Fixing the marginal totals in the table, and under the hypothesis that the survival is 

independent of group, the four entries are determined by the value  𝑑1𝑖 which has a 

hypergeometric distribution, with mean:  

𝑒1𝑖 =
𝑛1𝑖𝑑1𝑖

𝑛𝑖
  and variance   𝑣1𝑖 =

𝑛1𝑖𝑛2𝑖𝑑𝑖(𝑛𝑖−𝑑𝑖)

𝑛𝑖
2(𝑛𝑖−1)

 . 

Combining the information in the table to get overall deviations and corresponding 

variance gives a statistics:  

𝑊𝐿 =
𝑈𝐿

2

𝑉𝐿
 ~𝜒1

2 , where 𝑈𝐿 = ∑ (𝑑1𝑖 − 𝑒1𝑖)
𝑟
𝑖=1  and 𝑉𝐿 = ∑ 𝑣1𝑖

𝑟
𝑖=1 . 

This method was proposed by Mantel and Haenszel (1959).  A test based on this statistic 

is called Mantel-Cox or Peto-Mantel-Haenszel.  
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The statistic is called log-raank test since it is derived from the ranks of the survival 

times and the resulting rank statistic is based on logarithm of the Nelson-Aalen estimate 

of survival function. The statistic summarizes the extent to which the observed survival 

times deviate from the expected under the hypothesis of no group differences. 

Wilcoxon Test 

This is also called Bleslow test and is used to test the null hypothesis that there is no 

difference in survival functions of the two groups of the survival data. It is based on the 

statistic 

𝑈𝑊 = ∑ 𝑛𝑖(𝑑1𝑖 − 𝑒1𝑖)

𝑟

𝑖=1

 

where the differences are weighted by  𝑛𝑖 (total number of individual at risk at time 𝑡𝑖).  

The variance for this statistic is estimated by 

𝑉𝑎𝑟(𝑈𝑊) = ∑ 𝑛𝑖
2𝑣1𝑖

𝑟

𝑖=1

= 𝑉𝑊 

with 𝑣1𝑖 , 𝑑1𝑖  , 𝑒1𝑖 as defined in the log rank test above. The corresponding test statistic 

is then 

𝑊𝑊 =
𝑈𝑊

2

𝑉𝑊
~𝜒1

2 

In order to compare more than two groups of the survival function, extensions are made 

to both Wilcoxon and logrank tests.  

 

The logrank test is more suitable when an altenative to null hypothesis of no difference 

in survival functions between groups is that the hazard for an individual in one group 

at any time is proportional to the hazard for a similar individual in the other group at 

the same time. This hypothesis is called proportional hazard, a useful assumption in 

modelling survival data. In case of other deviations from null hypothesis, Wilcoxon test 
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is more appropriate. Having looked at non-parametric procedures for analysis of 

survival data, next are semi-parametric methods. 

 

2.4 Semi-Parametric Regression Methods for Censored  Survival data 

The non-parametric methods provided above, can be useful in analysis of single group 

or survival data, or making comparison for different groups of survival data. In medical 

studies that give rise to survival data , it is important for example to  record demographic 

variables such as age, sex of the patient and other physiological variables such as blood 

volume, haemoglobin levels, and heart rate. It may also be important to record the 

lifestyle of the patients such as smoking , physical exercise  and dietary behaviours. For 

example, in a clinical trial involving two treatments for prostate cancer, the primary 

aim is to compare the survival experience of patients in the treatment arms (Collet, 

2003). However, variables such age of the patient, size of the turmour are recorded and 

may likely influence the survival times. As such it will be imperative to take account 

of these variables when making assessment of extent of any difference in the survival 

times. The variables such as age, turmour size and physiological variables are called 

explanatory variables. 

 

In order to  explore the relationship between the survival experience of patients and the 

explanatory variables, methods based on statistical modelling are applied. In survival 

analysis, the interest centers on risk or hazard of failure at any time t. For this reason, 

the modelling process focuses on hazard function. 
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There are two common broad regression models used to relate the predictors to the 

hazard function and these are: Proportional hazards model/ Cox regression model and 

accelerated failure time model.  

 

The proportion hazard model is a semi-parametric model, because no assumptions are 

made regarding the nature of the baseline hazard function 𝜆0(𝑡) and also there is no 

assumption made regarding the distribution of the survival times, while the accelerated 

failure time model can be considered parametric. In the subsequent section, the Cox 

model is discussed. 

 

 2.4.1 Cox-regression/ Proportion hazard model  

The model was proposed by Cox (1972) and it is also called proportion hazard model 

because it is based on an  assumption that , for two groups of survival data, the hazard 

of failure for a subject in one group at time t is proportional to the hazard of failure for 

the  similar individual in the other group at the same time t. 

In its basic form, the hazard function for a subject with predictors  

 𝑋𝑖
𝑇 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝 ) is  

𝜆𝑖(𝑡, 𝑿) = 𝜆0(𝑡) exp(𝛽𝑇𝑿𝒊) , 

where 𝛽𝑇 is the vector of regression coefficients and 𝜆0(𝑡) is the baseline hazard 

function, that corresponds to hazard function of a subject with 𝛽𝑇𝑋𝑖 = 0.  𝑋𝑖  is a vector 

of covariates for the i-th subject. Taking the log of the above function gives  

log (
𝜆𝑖(𝑡,𝑿)

𝜆0(𝑡)
) = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3+, . . . , 𝛽𝑝𝑥𝑖𝑝.  

The above equation means that log hazard ratio is equal to the linear component of the 

explanatory variables. It can also be shown that 𝑒𝛽𝑖  is the hazard ratio.  
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 2.4.2 Cumulative Incidence Curves (CIC) 

This is an altenative to Kaplan-Meier in competing risks setting , and involves the use 

of marginal probabilities as introduced by (Kalbfleisch & Prentince, 1980). The CIC is 

derived from a cause-specific hazard function, and provides estimates of the “marginal 

probability” of an event in the presence of competing events, and does not require the 

assumption that competing risks are independent. In order to come up with CIC,  first 

estimate the hazard at ordered 𝑡𝑗 when the event of interest occurs ℎ̂𝑘(𝑡𝑗) : estimated 

proportion of subjects that fail from risk k. In order to be able to fail at time 𝑡𝑗, a subject 

must have survived to the previous time 𝑡𝑗−1, thus the overall survival to time 𝑡𝑗−1 is 

denoted 𝑆(𝑡𝑗−1). Overall survival is considered than cause-specific survival 𝑆𝑘(𝑡) 

because the subject must have survived all other competing events. The estimated  

incidence of failing from event type k at time 𝑡𝑗  is denoted by:  

 𝐼𝑘(𝑡𝑗) = 𝑆̂𝑘( 𝑡𝑗−1)ℎ̂𝑘(𝑡𝑗). 

 

Thus cumulative incidence  at time 𝑡𝑗 is then the cumulative sum up to time 𝑡𝑗 ( j=1 to 

j’=j ) of  these incidence values over all  event type k failure times. 

or 𝐼𝑘(𝑡𝑗) = 𝑃(𝑇 ≤ 𝑡, 𝑘) = ∫ ℎ𝑘(𝑢)
𝑡

0
𝑆(𝑢)𝑑𝑢 for continuous t and 

 𝐼𝑘(𝑡𝑗) = ∑ 𝑆̂𝑘( 𝑡𝑗−1)ℎ̂𝑘(𝑡𝑗) 
𝑗′

𝑗=1   when t   is discrete. 

This is not a proper probability distribution since the cumulative incidence of failure 

from event k is below one. Having looked at methods for survival analysis, next are 

longitudinal data analysis methods. 
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2.5 Parameter estimation in Cox regression model 

The relationship between the hazard function and the explanatory variables is best 

explored through the estimation of the regression coefficients 𝛽𝑖′𝑠. One way of 

estimation is to assume the parametric form  of the baseline hazard such as exponential 

and then estimate the coefficients by maximization of the corresponding log-likelihood 

function. Kalbleish & Pentice (2002), derived a likelihhod involving only 𝛽 𝑎𝑛𝑑 𝑋 

based on marginal distribution of the ranks of the observed event times in the absence 

of censoring. To the contrary, Cox(1972) showed that parameter estimation can be done 

without specifying the baseline hazard and generalized in case of censoring. 

 

Suppose that all event times are distinct, and let  𝑡1 < 𝑡2 < 𝑡3, . . . , <  𝑡𝑘  be the ordered 

event times. Let 𝑅(𝑡𝑖) be the risk set at time 𝑡𝑖, and there will be 𝑟𝑖 individiuals in 𝑅(𝑡𝑖). 

The parameter  𝛽𝑇 can be estimated using partial likelihood maximization which is the 

product over the set of observed event times of the conditional probability of seeing the 

observed events, given the set of individuals at risk at those times, and the partial 

likelihood is given as:  

𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐿(𝛽) = ∏ [
exp (𝛽𝑇𝑥𝑖)

∑ exp (𝛽𝑇𝑥𝑘)𝑘𝜀𝑅𝑖

]

𝜎𝑖
𝑛

𝑖=1

 

where 𝜎𝑖 is the failure or censoring indicator with 𝜎 = 1 𝑓𝑎𝑖𝑙𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  Inference 

is done by treating the partial likelihood as if it fulfills all the properties of full 

likelihood. The log-partial likelihood is given as: 

𝑙(𝛽) = log [∏ [
exp (𝛽𝑇𝑥𝑖)

∑ exp (𝛽𝑇𝑥𝑘)𝑘𝜀𝑅𝑖

]

𝜎𝑖𝑛

𝑖=1

] 

= ∑ [exp(𝛽𝑇𝑥𝑖) − log (∑ exp (𝛽𝑇𝑥𝑘)𝑘𝜀𝑅𝑖
]𝑘

𝑖=1  
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Using partial-likelihood score equations:  
𝜕𝑙(𝛽)

𝜕𝛽
= 0, the maximum partial likelihood 

estimators 𝜷̂ are obtained, where in the process iterative optimization  procedures such 

as the Newton-Raphson algorithm are applied. The estimated 𝜷̂ can be used to estimate 

baseline hazard and cumulative hazard using Breslow’s estimates,  

𝜆̂0(𝑡) =
1

∑ exp (𝛽̂𝑇𝑥𝑘)𝑘𝜀𝑅𝑖

  and  Λ̂0(𝑡) = ∑
1

∑ exp (𝛽̂𝑇𝑥𝑘)𝑘𝜀𝑅𝑖
𝑖:𝑡𝑖

 . 

 

After fitting a Cox model, it is important to conduct model diagnostics, to check 

whether the fitted model comforms the data or not. In this next section, model 

diagnostic procedures in survival data analysis are discussed. 

 

2.6  Model checking in Cox regression model 

Once the Cox regression model has been fitted to the observed data, it is very important 

to check the adequacy of the model. The use of diagnostic procedures is an essential 

part in model process. For example, the model must include an appropriate set of 

explanatory variables from those measured in the study, and may need to check that the 

correct functional form of these variables have been used. It may also be necessary to 

check the proportional hazards assumptions in the modelling process. In Cox regression 

model, the procedures for model checking are based on quantities called residuals. In 

survival data analysis, various residuals namely, Cox-Snell, Modified Cox-Snell, 

Martingale, Deviance, Schoenfeld and Score residuals. In this section, Cox-Snell  and 

Schoenfeld residuals are discussed. 
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Cox-Snell Residuals 

Introduced by Cox and Snell (1968). They are the mostly used residuals in survival data 

analysis. The Cox-Snell residual for the i-th subject at time ti ,  i=1, 2,. . . ,n is given by 

𝑟𝐶𝑖
= exp (𝛽̂𝑥𝑖)𝐻̂0(𝑡𝑖) 

where 𝐻̂0(𝑡𝑖) is an estimated baseline cumulative hazard at time 𝑡𝑖. Note that the 𝑟𝐶𝑖
 is 

just equal to 𝐻̂𝑖(𝑡𝑖) = −log 𝑆̂𝑖(𝑡𝑖) ,where 𝐻̂𝑖(𝑡𝑖)  and  𝑆̂𝑖(𝑡𝑖)  are estimated  cumulative 

hazard and survival functions for  the i-th individual from the observed data. In order 

to check for   model adequacy, one expects that if the fitted model is satisfactory, then 

a model based on estimate of survival function for the  i-th individual at time ti will be 

closer to the corresponding value of 𝑆𝑖(𝑡𝑖). Here −log 𝑆̂𝑖(𝑡𝑖) behaves as n observations 

from exponential distribution with unit mean.  

 

Schoenfeld residuals 

The disadvantage of the rest of the residuals is that they depend on estimated survival 

function and require an estimate of cumulative hazard function. These challenges are 

addressed by residuals proposed by Schoenfeld (1982). The important feature of this 

residual is that there is no single value of residual, for each individual,  rather a set of 

values corresponding to each and every predictor included in the fitted model. The i-th 

Schoenfeld residual for xj  , the j-th  explanatory variable in the model is : 

𝑟𝑃𝑗𝑖
= 𝛿𝑖(𝑥𝑗𝑖 − 𝑎̂𝑗𝑖) ,    𝑎̂𝑗𝑖 =

∑ 𝑥𝑗𝑙 exp (𝛽̂𝑥𝑙)𝑙𝜀𝑅(𝑡𝑖)

∑ exp (𝛽̂𝑥𝑙)𝑙𝜀𝑅(𝑡𝑖)
 

where 𝑥𝑗𝑖 is value for the j-th  explanatory variable j=1,2,3..., p for the i-th individual 

in the study, 𝛿𝑖 = 0 if censored and 𝛿𝑖 = 1  if uncensored, 𝑅(𝑡𝑖) is the risk set at time 

𝑡𝑖. Schoenfeld (1982) showed that the 𝑟𝑃𝑗𝑖
 are asymptotically uncorrrelated and have 

expected value of zero, thus a plot of 𝑟𝑃𝑗𝑖
 and Xj  should be centered around zero. 
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2.7 The Extended time dependent Cox model 

The previous Cox model in section 2.4.1, assumes that the hazards depend on covariates 

whose values do not change with time. For a given subject, some covariates may be 

changing with time. These covariates are called time-dependent. These can further be 

classified as exogenous or endogenous covariates. Exogenous variables have  values 

that  change because of causes not related to the subject of the study, ‘external’ 

characteristics that affect several individuals simultaneously. Presented in terms of 

probability, the future path of the exogenous covariate up to any time t > s is not affected 

by the occurrence of an event at time points, i.e., 

Pr(𝛾𝑖(𝑡)|𝛾𝑖(𝑠), 𝑇𝑖 ≥ 𝑠) = Pr(𝛾𝑖(𝑡)|𝛾𝑖(𝑠), 𝑇𝑖 = 𝑠) 

where 0 < 𝑠 ≤ 𝑡  and  𝛾𝑖(𝑡) = {𝑦𝑖(𝑠), 0 < 𝑠 ≤ 𝑡  } . 

 

The standard examples include period of the year (winter or summer), and 

environmental factors such as temperature, humidity, and polution levels 

(Andrinopoulou, 2014). Other factors that can be predetermined from the beggining of 

study such as treatment dose, are also examples of exogeneous covariates. 

 

The endogenous covariates are time-dependent measurements taken on the subjects 

under study, such as biomarkers and clinical parameters. An exogenous covariate is a 

predictable process, while the endogenous covariates are not. Another feature of 

endogenous covariates is that they are usually measured with error and their complete 

path up to any time is not fully observed and their complete history is not known 

(Andrinopoulou, 2014).  For example, in malaria studies, blood biomarkers such as 

haemoglobin levels, number of parasites and others are endogenous covariates. In this 
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case, there is a need to postulate a model that relates the time varying covariates and 

the time to event of interest. 

 

This model was proposed by Cox (1972). The extended Cox model is given as: 

𝜆𝑖(𝑡, 𝑦𝑖(𝑡), 𝑥𝑖) = 𝜆0(t)exp[(𝛽𝑇𝑥𝑖) +  𝛼𝑦𝑖(𝑡)] ,  

where 𝑦𝑖 is a vector of time dependent covariates and 𝑥𝑖 denotes the baseline covariates. 

Interpretation of regression coefficient vector  𝜶 is that exp (𝛼) denotes relative increase 

in the risk for an event at time t that results from unit increase in 𝑦𝑖(𝑡).  The 

interpretation of  𝜷 is the same as in the previous Cox model. 

Parameter estimation of 𝜶 is based on partial likelihood estimation function, 

𝑃(𝑙(𝛽, 𝛼)) = ∑ ∫{exp[(𝛽𝑇𝑥𝑖) +  𝛼𝑦𝑖(𝑡)]}

∞

0

𝑛

𝑖=1

− 𝑙𝑜𝑔 [∑ exp[(𝛽𝑇𝑥𝑗) +  𝛼𝑦𝑗(𝑡)]

𝑗

] 𝑑𝑁𝑖(𝑡) 

where  𝑁𝑖(𝑡) is the counting process which counts the number of events for subject  i, 

by time t. 

 

The above Extended Cox  model assumes that the time dependent covariates are a 

predictable process, measured without errors and their complete path can be specified, 

and assume that covariates change value at the follow-up visits and remain constant in 

the time interval in between these visits which is delusive with time dependent  

endogenous covariates such as biomarkers. Ignoring these features and fit extended Cox 

regression model will lead to biased estimates of the biomarkers, thus need for 

dedicated methods of survival analysis. 
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2.8 Parametric  Models for Analysis of Survival data 

The previous Cox model seen before, does not make any distribution assumption 

regarding the event times. In parametric model, the survival times are assumed to have 

a certain distribution, so the baseline hazard is also assumed to have some distribution.  

Models in which a specific probability distribution is assumed for the survival times 

are called parametric models (Collet, 2003).  Parametric forms that can be assumed for 

the survival time include, the exponential, Weibull, Exreme value, log-normal and log-

logistic distributions (Tableman & Kim, 2004). However, the  mostly used parametric 

models are Weibull distribution introduced by Weibull (1951) and exponential 

distribution. This section only presents the Weibull distribution.  

Weibull distribution. 

Suppose that survival time T follows a Weibull distribution, then  

𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1exp (−𝜆𝑡𝛾) for   0 ≤ 𝑡 < ∞ as the Weibull probability density function.   

The corresponding hazard function is given as: ℎ(𝑡) = 𝜆𝛾𝑡𝛾−1  

so that the survival function is: 

𝑆(𝑡) = exp (− ∫ 𝜆𝛾𝜇𝛾−1𝑡

0
𝑑𝜇) = exp (−𝜆𝑡𝛾), 

where  𝜆 is a scale parameter and 𝛾 as a shape parameter. This distribution, has the 

𝐸(𝑇) = 𝜆−1Γ(1 +
1

𝛾
). With the change in shape parameter, the following is the 

behaviour of ℎ(𝑡), the hazard function.  

 

For 𝛾 < 1, ℎ(𝑡) is a monotone decreasing function, 𝛾 ≥ 1 , ℎ(𝑡) is an increasing 

function. In order to relate the hazard function at any time with respect to covariates, 

then the hazard model at any time t, with respect to the explanatory variables will be: 
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ℎ𝑖(𝑡) = exp (𝜷𝒙𝒊) ℎ0(𝑡),  where baseline hazard is given as: ℎ0(𝑡) = 𝜆𝛾𝑡𝛾−1. The 

corresponding survival function, based on the above hazard is : 

𝑆𝑖(𝑡) = exp (− exp(𝜷𝒙𝒊) 𝜆𝛾𝑡𝛾).   

Fitting these models require parameters to be estimated. The following section, 

discusses the parameter estimation in the above hazard  model. 

 

 2.8.1 Parameter Estimation in Weibull distribution 

In order to assess the plausibility of the distribution for survival times , one compares 

the survival function  with that of a chosen model. One way to do this, is by 

transforming the survival function to produce a plot that should give a straight line if 

the assumed model is appropriate. However, to achieve this, parameters in the model 

need to be estimated using, the methods of maximum likelihood. 

Suppose there are r failures among the n individuals with n-r censored times. For 

Weibull distribution function, the likelihood function is given as: 

 𝐿(𝛾, 𝜆) = ∏ (ℎ𝑖(𝑡))
𝛿𝑖𝑛

𝑖=1 𝑆𝑖(𝑡), 

where 𝛿𝑖 is zero if censored and unity otherwise and ℎ𝑖(𝑡) and 𝑆𝑖(𝑡) are hazard and 

survival functions respectively, as defined in previous subsection. The corresponding 

log likelihood function  after substituting the hazard and survival functions accordingly 

is: 

log(𝐿(𝛾, 𝜆, 𝒙)) = ∑ [𝛿𝑖{𝜷′𝒙𝒊 + log(𝜆𝑡) + 𝛾𝑙𝑜𝑔𝑡𝑖}𝑛
𝑖=1 − 𝜆exp (𝜷′𝒙𝒊)𝑡𝛾]. 

Differentiating this function and equating to zero gives the maximum likelihood 

estimates of 𝜷′, 𝛾 𝑎𝑛𝑑 𝜆. 

In the next section, methods for analysis of survival data, but in competing risks settings 

are discussed. 
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2.9 Competing risks Survival  Data Analysis  

In medical studies, though researcher may be interested in one particular outcome of 

interest, there are situations where there are several reasons why an event can occur, 

and this is known as “competing risks”. Competing risks are said to be present when a 

patient is at risk of more than one mutually exclusive events, such as death from 

different causes, and the occurence of one of these will prevent any other event from 

ever happening (Gichangi & Vach, 2005). Estimation of the marginal or net survival 

function of the time to an event, in a competing risks framework is a common problem 

encountered in medical  applications of survival analysis (Zheng & Klein, 1995). Often 

it is impossible to measure the time to occurence of an event of interest due to the 

occurrence of some other event, a competing risk, at some time before the event of 

interest.  This competing event can be the withdrawal of the subject from the study, 

death, or failure from some cause other than the one of interest (Williamson et al.,2007).  

 

In clinical trials of new treatments, patients may withdraw because they are doing 

poorly with new treatment. For example, in epilepsy studies, patients diagnosed with 

epilepsy are given antiepileptic drug. In such studies, if the treatment groups have no   

seisure and there are few  side effects, it is considered successful. Treatment that causes 

unacceptable side effects are changed to an altenative, whilst a treatment that fails to 

control seizures will either be changed to an altenative, or a second drug will be added 

(Williamson et al., 2007).  

 

In such studies, of interest is retention time, defined as the time from randomisation to 

the withdrawal of the randomised Anti-epileptic drug or addition, a primary outcome 

recommended by the International League Against Epilepsy  (Sander et al., 2007).  
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The possible competing risks include withdrawal due to adverse effects and inadequate 

seizure control. Some authors have examined separately the time to withdrawal due to 

side effects (Lhatoo et al., 2000) and have censored patients whose allocated treatment 

is changed due to inadequate seizure control, which may give misleading results as 

analyses assume that the competing risks of withdrawal are independent (Kalbfleisch 

& Prentince, 1980). Ignoring this aspect of an outcome by analysing events overall can 

result in misleading conclusions (Kalbfleisch & Prentince, 1980). If a patient 

experiences a competing event, standard survival analysis methods treat that patient as 

censored for the outcome of interest (Scherzer, 2017). Censoring due to loss to follow-

up may be negatively or positively correlated with the event time (Hevia, 2014). This 

is very important, since  Kaplan-Meier curves  overestimate the incidence of the 

outcome over time  and use of Cox models inflates the relative differences between 

groups, resulting in biased hazard ratios (Scherzer, 2017). 

 

Models for Competing risks 

A notion of competing risks setting can be graphically presented with an event-free 

state and various end points corresponding to distinct failure types. 

 

 

 

Figure 2: Multiple events scenario with k distinct events. 
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One approach to handle such situations is to consider those that experience the other 

event types as censored, and then estimate the corresponding probabilities of failure  an 

approach called “ naive Kaplan- Meier”. The problem with this approach is that, it 

violates the independence assumption of censoring process. In case where the 

competing risks survival times distributions were independent of the survival times for 

the event of interest, one would expect the hazard of event of interest at any time point 

to be the same for the subjects that are still under follow-up. Howbeit, the naive K-M 

will overestimate the probability of the failure and underestimate the survival 

probabilities. The other approach is the use of cause-specific models. 

 

 2.9.1 Cause-specific hazard function 

 

Let 𝐶𝑖(𝑇𝑖, 𝐷𝑖) denote the competing risks survival data on subject 𝑖, where 𝑇𝑖 is the 

failure or censoring time , and 𝐷𝑖 takes the values {0, 1, 2, … , 𝑔}, with 𝐷𝑖 = 0 indicating 

a censored event and 𝐷𝑖 = 𝑘 showing that subject 𝑖  fails from the 𝑘𝑡ℎ type of failure, 

where 𝑘 = 1, . . . , 𝑔. Throughout, the censoring mechanism is assumed to be 

independent of the survival time. The cause –specific hazard model  is defined as:  

𝜆(𝑡)𝑘 = lim
ℎ→0

𝑃(𝑡≤𝑇𝑖≤𝑡+ℎ,𝐷𝑖|𝑇𝑖>𝑡)

ℎ
= ℎ0𝑘(𝑡)𝑒𝑥𝑝(𝜸𝒌

𝑇𝑊𝑖
𝑇), 𝑡 > 0              

                                        

Where 𝜆(𝑡)𝑘 is the instantaneous rate for failure of type 𝑘, 𝑊𝑇 is a vector of covariates 

that are associated with the hazard function, and 𝜸𝒌
𝑇 , a corresponding vector of 

regression coefficients, ℎ0𝑘 is a completely unspecified baseline  hazard function for 

risk 𝑘. In its basic form, it is assumed that the hazard ratio (
𝜆(𝑡)𝑘

𝜆0𝑘(𝑡)
) depends only on 

covariates, whose value is fixed during follow-up  (baseline covariates).  
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The exp(𝜸) is called the cause-specific hazard ratio for the k event, and it represents the 

relative risk of failing from that event when the correspondent variable increases one 

unit in its value. In competing risks settings, the other approach is to use the cumulative 

incidence curves for the event of interest and the competing events. 

 

2.10  Longitudinal Data Analysis 

Longitudinal studies are defined as studies in which the outcome variable is repeatedly 

measured; i.e. the outcome variable is measured in the same individual on several 

different occasions (Twisk, 2003) . Longitudinal data are frequently encountered in 

health studies related to humans, animals or laboratory samples. Longitudinal data can 

be obtained retrospectively or prospectively, but much of longitudinal data is collected 

in prospective studies. In sociology and economics, longitudinal studies are refered to 

as panel studies. For example, in Family Medicine, studies on cardiovascular 

complications among patients with diabetes mellitus, longitudinal outcomes such as 

glucose levels, blood lipids levels, systollic and diastollic pressure are measured 

repeatedly  over time (Weel, 2005).  In cancer studies, the longitudinal data  such as 

circulating tumor cells, immune response to a vaccine, a genetic biomarker, or a health 

outcome are recorded (Ibrahim et al.,2010). Another example is in AIDS studies where 

repeated measurements of CD4+ and viral load are recorded during disease progression. 

In clinical trial, comparing different drug regimen therapy for schizophrenia, the 

Positive and Negative Symptom Rating Scale (PANSS)  a measure of  psychiatric 

disorder are repeatedly recorded (Diggle et al., 2004). In reproductive epidemiology, 

studies on progestrone collect the urinary metabolite progesterone over the course of 

the women’s menstrual cycles (days) (Wu & Zhang, 2006).  
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Longitudinal data is got via longitudinal research design at a number of seperate 

occassions in time called “phases” or “waves of the study”.  In a  randomized clinical 

trial, investigators often collect prospective longitudinal data  on  one or more endpoints 

in response to a particular intervention relative to a control condition. The  focus may 

be either to determine if  there is a  significant difference between control and treated 

individuals  at  the end  of  the study, often termed  an  “endpoint” analysis, or to 

examine differential rates of  change  over  the course  of  the  study in treated and  

control conditions. 

   

In the case in  which subjects are initially randomized to the control and treatment 

conditions, differences  in either the  final  response or the rate  of  response  over  time  

(e.g., differential linear trends over time) are taken as evidence that the  treatment 

produces  an  effect on the outcome measure  of  interest  above  and beyond chance 

expectations based on responses  in  the control condition (Hedeker & Gibbons, 2006). 

Measuring subjects repeatedly through the duration of the study, one expects positive 

correlation, which means that standard statistical tools (like the t-test and simple 

regression) that assume independent observations, are not appropriate for this kind of 

data analysis (Hevia, 2014). Since longitudinal data are prospective studies, missing 

data issues are inevitable. In an attempt to treat the longitudinal data, with more realistic 

assumptions  and missing processes, a variety of more rigorous statistical methods have 

been developed.  

 

The mostly used models in longitudinal data analysis  include  ANOVA models, 

MANOVA models, covariance pattern models, mixed-effects regression models (Laird 

& Ware, 1982),  and generalised estimating equations (GEE) (Zeger et al., 1988).  
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Other models for analysis of missing processes such as selection models, pattern 

mixture models, and shared parameter models for discrete time are existent and applied 

in longitudinal data analysis (Molenberghs & Kenward, 2007). In the following 

subsections, the focus is on mixed-effects model, covariance pattern models and GEE 

models. 

 

 2.10.1  Mixed-effects Regression Model (MRM) 

A basic characteristic of mixed effects models is the inclusion of random-subjects 

effects in the model in order to account for the influence of subjects on their repeated 

measurements. Random effects describe each person’s trend across time, and explain 

correlational structure of the longitudinal data. This intuitive idea about the MRM is 

depicted by Figure 3. 

 

Figure 3: Random intercept Mixed-effects Model 

 

Figure 3  depicts the population average trend represented by the solid line, and two 

individual trends which are subject-specific mean profiles over time, one above and 

other below the population average trend line.  

The basic model is given as follows: 

𝑦𝑖(𝑡𝑖𝑗) = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝜀𝑖𝑗.  
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In this model, both y and t are allowed to change by individual and occassions, and 

𝜀𝑖𝑗~𝑁(0, 𝛿2) and independently distributed.  

The independence assumption of random errors makes the above model unrealistic for 

longitudinal data, since y are observed repeatedly from same individual and it is more 

reasonable to assume that errors within an individual are correlated to some degree. The 

model also posits that the change across time is the same for all indviduals since 

𝛽0 𝑎𝑛𝑑 𝛽1 ,( initial level and linear change across time) do not vary by individual. As 

such it more important to add individual-specific effects that will account for data 

dependency and describe differential time trends for different individuals.  

 

An extension to the above model is given as:  

𝑦𝑖(𝑡𝑖𝑗) = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝑣0𝑖 + 𝜀𝑖𝑗,  

where 𝑣0𝑖 describes the influence of individual i on their repeated observations, 𝑣0𝑖 may 

deviate from zero, since subjects may have negative or positive influence on their 

longitudinal data. Goldsten(1995) suggests that the model should be presented in a 

hierarchical or multilevel form to best reflect how the model characterises an 

individual’s influence on their observations. Thus  

Level 1 : 𝑦𝑖(𝑡𝑖𝑗) = 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗 , as within subject model 

Level 2: 𝑏0𝑖 = 𝛽0 + 𝑣0𝑖 , 𝑏1𝑖 = 𝛽1 between–subjects model /slope as outcome model  

(Burstein, 1980).  

 

Individuals in a sample are representative of the general population, then 𝑣0𝑖 are 

considered random effects, with 𝑣0𝑖~𝑁(0, 𝛿𝑣
2), and 𝜀𝑖𝑗~𝑁(0, 𝛿2), which are 

conditionally distributed (conditional on individual-specific effects, 𝑣0𝑖) and the above 

model is a random effects model. The generalization of this model, allowing additional 
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predictors and regression coefficients to vary randomly, is known as the linear mixed-

effects model, and the standard model for a continuous longitudinal outcome is given 

as: 

𝑦𝑖(𝑡𝑖𝑗) = 𝑚𝑖(𝑡𝑖𝑗) + 𝜀𝑖𝑗                                                                                                          (1) 

where 𝑚𝑖(𝑡𝑖𝑗) is a linear predictor term (mean response):  

𝑚𝑖(𝑡𝑖𝑗) = 𝑋𝑖(𝑡𝑖𝑗)
𝑇

𝐵(1) + 𝑍𝑖(𝑡𝑖𝑗)
𝑇

𝑏𝑖                                                                                    (2) 

 and   𝜀𝑖𝑗  ~𝑁(0, 𝜹𝟐𝑰𝒏𝒊
)  are measurement errors , which are assumed to be 

independently and identically distributed. Let 𝑋𝑖(𝑡𝑖𝑗)  be a design vector of covariates 

for subject 𝑖 associated with fixed effects  𝐵(1). Also   𝑍𝑖(𝑡𝑖𝑗) denotes row vector of the 

design matrix associated with a latent random variable (vector) that can be interpreted 

as subject-specific random effects  𝑏𝑖.  

 

The standard model assumes that the random effects are distributed as multivariate 

normal with mean 0 and variance-covariance matrix D, i.e  𝑏𝑖~𝑁(0, 𝐷) and the model  

also posits  that 𝑏𝑖 is  independent of 𝜀𝑖𝑗 . 𝑦𝑖(𝑡𝑖𝑗) is the longitudinal outcome measured 

at time t for subject i, where i = 1, 2, . . . , ni, and ∑ 𝑛𝑖 is the total number of longitudinal 

observations . The use of ni, suggests the fact that  due to different event times , some 

patients may miss one or more visits. It is further assumed that the missing values in 

the longitudinal measurents caused by reasons other than occurence of events are 

missing at random. This model accounts for correlation for measurements within a 

subject and handles unequally spaced visit times. 

 

The interpretation of the fixed effects 𝑩(𝟏) is the same as in a simple linear regression 

model: assuming  p covariates in the design matrix X, the coefficient 𝐵𝑗 , for j=1, 2,...,p 
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denotes the change in the average 𝑦𝑖(𝑡𝑖𝑗) when the corresponding covariate Xj  is 

increased by  one unit, while all other predictors are held constant. In the same way, 𝑏𝑖 

show how a subset of the regression parameters for the i-th subject deviates from those 

in the population.   

 

With mixed-effects models one is  able to include subjects with incomplete data across 

time, hence increasing the statistical power, and avoid bias presented by complete-case 

analysis where complete cases may not be representative of the whole population. The 

other advantage of mixed effects model is that MRM estimates changes for each 

subjects, and mean response changes in the population. It is important to estimate the 

parameters in the model, and the next section discusses the methods applied in 

parameter estimation. 

 

2.11 Parameter Estimation in Mixed-effects regression model 

In this section are the methods used to estimate the fixed effects and random effects in 

the analysis of longitudinal data.  

 Fixed effects estimation 

Parameter estimation can be done using generalised least-squares estimation for 𝑩 

which is the same as maximum likelihood estimation of fixed effects. This  can be done, 

using marginal models, 

𝑦𝑖(𝑡𝑖𝑗) = 𝑋𝒊𝐵 + 𝜀𝑖𝑗
∗  , with 𝜀𝑖𝑗

∗ = 𝑍𝑖𝑏𝑖 + 𝜀𝑖𝑗 , with correlated errors , and variance-

covariance matrix, 

𝑐𝑜𝑣(𝜀𝑖𝑗
∗ ) = 𝑉𝑖 =  𝑍𝑖𝐷𝑍𝑖

𝑇  +  𝛿2𝐼𝑛𝑖
, with 𝐼𝑛𝑖

  identity matrix. Assuming that 𝑉𝑖 is 

known, minimizing the function,  
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∪= (𝑦 − 𝑋𝐵)′𝑉−1(𝑦 − 𝑋𝐵) , one obtains the generalized least square estimators for 

𝑩, given as:  

𝐵̂ = (∑ 𝑋𝑖
𝑇𝑉𝑖

−1𝑋𝑖

𝑛

𝑖=1
)

−1

∑ 𝑋𝑖
𝑇𝑉𝑖

−1𝑦𝑖

𝑛

𝑖=1
 

This  method is based on Liang and Zeger (1986). 

 Random effects estimation 

There are various methods to prediction of random effects, one of which is using 

Henderson’s mixed model equation, that considers joint distribution of y and b  and the 

log-likelihhood function of the linear model (Henderson et al., 2000). The Henderson’s 

equation yields the best linear unbiased estimators for both the random effects and the 

fixed effects. The equation is given as follows: 

[𝑋′𝑅−1𝑋 𝑋′𝑅−1𝑍
𝑍′𝑅−1𝑋 𝑍′𝑅−1𝑍 + 𝐷−1] [

𝐵
𝑏

] = [
𝑋′𝑅−1𝑦

𝑍′𝑅−1𝑦
] , 

and this has the solutions 

𝐵̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑦  and  

𝑏̂ = 𝐷𝑍′𝑉−1(𝑦 − 𝑋𝐵) , where 𝑅 = 𝛿2𝐼𝑛𝑥𝑛𝑖
.  

V is estimated using maximum likelihood estimation or restricted maximum estimation. 

However, MLE is biased for small samples and RMLE gives better estimates with small 

sample. To obtained a closed form of the estimates, numerical optimization methods 

such as Expectatiom–Maximization (EM) methods are used.  
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2.12 Covariance Pattern Models (CPMs) 

These models were introduced by Jennrich and Schluchter(1986), and assumes that 

timing of the measurements are fixed (subjects  intended to be measured at the same 

finite number of occassions).   

They are an extension to MANOVA models, however they allow incomplete data 

across fixed number of time points and allow a variety of possible variance-covariance 

structures. The variance-covariance matrix of the repeated measurements are assumed 

to be of particular form, and not resulting from inclusion of random-subject effects. 

They are considered as an extension to multiple linear regression with flexibility in the 

structure of variance-covariance matrix. The model is given as below: 

𝒚𝒊 = 𝑿𝒊𝝑 + 𝜺𝒊 ,   i=1, 2,..., N ,    j=1 ,2, . . ., ni  observations for individual i. 𝒚𝒊 is  the  

ni x 1 dependent variable vector for i-th  individual, 𝑿𝒊 is the ni x p predictor vector  for 

an i-th  individual. 𝝑 is the p×1 vector of fixed regression parameters and 𝜺𝒊 is the ni x 

1 error vector. It is further assumed that 𝜺𝒊~𝑵(𝟎, ∑𝒊) and 𝒚𝒊~𝑵(𝑿𝒊𝝑, ∑𝒊).  Note that 

each ∑𝒊  is a submatrix of n xn matrix ∑ where  n  is the total number of fixed points. 

 

 2.12.1 Variance-Covariance  Structures 

There are several (error)  variance-covariance structures and these include compound 

symmetry,  first-order autoregressive, Toeplitz, unstructured form and random effects, 

and exponential structures. In this section, the compound symmetry and the 

Unstructured forms are described.  

Compound Symmetry 

This specifies equal variances and equal covariances. In a matrix form, it can be written 

as  
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With variance of the response variable 𝜎2 + 𝜎1
2 and covariance for any pairwise 

association of the response variable is 𝜎1
2. The number of parameters in this structure 

is 2, namely 𝜎2 and 𝜎1
2.  

 

Unstructured form  

The other variance-covariance structures assume that variance is constant across time 

(Compound symmetry), and that the lagged correlations are either all the same, 

decrease exponentially or equal within lag. For example the Toeplitz structure, is 

reasonable when the time intervals for the measurements are the same or nearly the 

same. In reality, the above assumptions may not hold, hence resort to unstructured form. 

This allows that the parameters be different and has a symmetric matrix with n(n+1)/2  

parameters. In a matrix form,this can be written as : 

 

Where 𝜃𝑗′𝑗 = 𝜃𝑗𝑗′ due to the symmetry. 
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 2.12.2  Model Selection for the Variance-Covariance structures 

To determine which covariance-variance structure that best fits the data, (Jennrish & 

Schluchter, 1986) use likelihood ratio test to compare the various structures to 

unstructured form (saturated model). The test has n(n+1)/2 –q*  parameters where q*  is 

the number of parameters in the reduced model. This model selection requires that the 

covariates be the same for both the saturated and reduced models. Both maximum 

likelihood and restricted maximum likelihood methods can be used in model estimation 

and likelihood calculations. 

 

2.13 Generalized Estimating Equation Models (GEE) 

Longitudinal data are correlated. To account for this correlation, GEE models were 

developed by (Zeger et al., 1988) as an extension to generalized linear models. GEE 

models are also called marginal models  indicating that the model for the mean response 

depends on covariates of interest not any random effects (Fitzmaurice et al., 2004). The 

model assumes MCAR missing processs for the data, fixed number of time points, and 

only the n×n correlation matrix is considered in GEE models. The model makes 

specifications on marginal distribution and likelihood of yij  for varying y which is 

different in CPMs where the joint distribution and likelihood function of  𝒚𝒊  are 

specified. GEE models have a wide range of applications to different types of outcome 

variables, including count, categorical and continuous data.  More literature on GEE 

models include, Davis(1993), Zeger et al (1988), Diggle et al (2002) and Hardin and 

Hilbe (2003). Here, GEE models based on Liang and Zeger (1986) are described. In 

order to understand the GEE model, it is important to consider the generalized mixed 

effects models, since they are considered a root for GEE models, in case of correlated 

longitudinal measurements. 
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Generalized Linear Models 

GEE basically has the  focus on regression of parameters 𝜷 not the variance-covariance 

structures. Since GEE models are an extension to GLMs for the case of corrrelated data, 

to motivate the understanding of GEE models one reviews the GLMs. GLMs are family 

of models that are used to fit fixed effects regression models to normal and non-normal 

data (Nelder & Wedderburn, 1972).  

 

In these models the response variable is considered to belong to a class of distributions 

called exponential family with common GLMs such as linear regression for normally 

distributed response variable, logistic regression for binary response, and Poisson 

regression for count dependent variable. The GLMs have three specifications, namely 

linear predictor, link function and variance of the response variable 𝒚𝒊 conditional on 

𝒙𝒊.  The linear predictor 𝝋𝒊 = 𝒙𝑖
′𝜷  with the possible link functions  g(.) that convert 

the expected value 𝜇𝑖 of 𝒚𝒊 to the linear predictor and the variance of 𝒚𝒊 as is seen 

below: 

𝑔(𝜇𝑖) = 𝜇𝑖  an identity link function in ordinary multiple regression and 𝑣𝑎𝑟(𝒚𝒊) =

∅𝑣(𝜇𝑖) where 𝑣(𝜇𝑖) is a known variance function and ∅ is a scale parameter that may 

be known or estimated. In ordinary logistic regression, ∅ is set to 1, and 𝑣(𝜇𝑖) is the 

error-variance. The link functions and variances of 𝒚𝒊 can be specified for both logistic 

and Poisson regressions.  

To obtain estimates for  𝜷, the estimation equation 

𝑈(𝜷) = ∑ (
𝜹𝝁𝒊

𝜹𝜷
)

′

(𝑣(𝑦𝑖))−𝟏(𝒚𝒊 − 𝜇𝑖)

𝒏

𝒊=𝟏

= 𝟎 
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which depends on mean and variance of y  and not the distribution of  y is used. Thus 

solutions of this equation provided estimates called “quasi-likelihood estimates”. 

GLMs are fixed effects regression models and assume that the observations are 

independent, hence not suitable for analysis of longitudinal data which is highly 

correlated. However, they are extended to account for correlation inherent of 

longitudinal data, thus GEE models. 

 

 GEE Models 

Since these models assume fixed time points, they only need to assume distribution of 

𝒚𝒊𝒋 at time j. There is no need to assume joint distribution of 𝒚𝒊 , but only the marginal 

distributions of  the independent variable at the time points. GEE focus on regression 

of y on X. Since GEE models are an extension to GLMs, they also make the following 

specifications: 

Linear predictor: 𝝋𝒊𝒋 = 𝒙𝑖𝑗
′ 𝜷  , with 𝒙𝑖𝑗

′  as covariate vector for subject i at time j. 

Link function: 𝑔(𝜇𝑖𝑗) =  𝝋𝒊𝒋     

Varaince of y: 𝑣(𝑦𝑖𝑗) = ∅𝑣(𝜇𝑖𝑗), with 𝑣(𝜇𝑖𝑗) as known variance function and ∅ a scale 

parameter that can be estimated. 

Working Correlation Structure 

This is an additional component that misses in GLMs. The working correlation structure 

of the repeated measures is  R of size n x n since subjects are measured at fixed time 

points: This specification, now accounts for correlation inherent of  longitudinal data. 

The subject i correlation matrix is 𝑹𝒊 of size ni x ni  if  ni <n, since subjects need not to 

measured at each time point. The R thus 𝑹𝒊, is assumed to be dependent on a vector of 
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correlation parameters denoted 𝜶 which present the average dependence among the 

repeated observations across subjects.  

 

There are various working correlation structures, namely, independence, exchangeable, 

AR(1), m-dependent and unspecified. The next section discusses the independence, 

exchangeable and AR(1) structures.  

 

Independence Structure 

This structure assumes that 𝑹𝒊(𝜶) = 𝑰 an nxn idenity matrix, an equaivalence to an 

assumption that data is not correlated. Howbeit, the assumption seems illogical with 

longitudinal data where correlation can not be ruled out. It is proposed that this structure 

leads to loss of efficiency with binary outcomes, but has an advantage to models that 

include time varying covariates. 

 

Exchangable Structure 

It assumes that all the correlations in R are the same. It specifies that 𝑹𝒊(𝜶) = 𝝆,  an 

equivalence to compound symmetry in CPMs. 

 

AR(1) structure 

In this structure, the within-subject correlation  over  time  is  an  exponential function  

of  the lag.  It is denoted as 𝑹𝒊(𝜶) = 𝝆|𝒋−𝒋′|.   With the order of the time lag,  and  

dependence on one term , the correlations tend to decline.  

Now parameters estimation  in generalised estimation equations is presented. 
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2.14 Parameter Estimation in GEE models 

In order to estimate parameters in GEEs, let 𝑩𝒊 be an n × n  diagonal  matrix with 

𝑉(𝜇𝑖𝑗) as the jth diagonal element. Also let 𝑹𝒊(𝜶) n×n , be the the working correlation 

matrix for subject i. The associated working variance-covariance matrix for yi  is 

defined as, proposed  by Liang and Zeger (1986). 

𝑽(𝜶) = ∅𝑩𝒊
1/2𝑹𝒊(𝜶)𝑩𝒊

1/2 

To find the estimates for  𝜷, one uses solutions to the equation, 

∑ 𝚭𝒊
′

𝑵

𝒊=𝟏

[𝑽(𝜶̂)]−𝟏(𝒚𝒊 − 𝝁𝒊) = 𝟎 

where 𝜶̂ is a consistent estimator of 𝛼 and 𝒁𝒊 =
𝝏𝒖𝒊

𝝏𝜷
 . The above formula is just an 

extension to estimation equation in GLM but now for  correlated longitudinal data. The 

equation depends only on mean of 𝒚𝒊 and its variance, thus the associated solutions are 

called quasi-likelihood estimates.  

Having reviwed the basics for survival data analysis and longitudinal methods, it is 

important to extend to joint modelling process. 

 

2.15 Joint Modelling for Longitudinal and Survival data 

Here, the interest is  on building a model that takes into account all three aspects namely, 

longitudinal data, survival data and competing risks.  In the first place an approach that 

jointly takes into account the survival and longitudinal data without the competing risks 

data is presented. In the course,  reasons for adopting  joint models than the seperate 

methods of longitudinal and survival data are also discussed. Later, an extension will 

be made, to introduce joint models in the competing risks settings. 
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2.15.1 Basic Nature of Joint Models  

The extended Cox regression model may take account of longitudinal data and survival 

data, but with limitations as previously observed. The longitudinal markers and the 

time-to-event outcomes in survival data, may be interrelated, suggesting the 

dependence. Under extended Cox regression model, only the exogenous covariates are 

taken care of, but not the endogenous. Also under time-dependent Cox model it is 

postulated that the value of the longitudinal outcome remains constant between the 

observed times. Assumption which are not valid for time endogenous covariates.  In 

order to illustrate the whole idea behind joint modelling, an example is given by 

(Rizopoulos, 2012), in Figure 4. 

 

Figure 4: An intuitive idea of joint models. 

 

In Figure 4, the bold line in the upper part of the figure shows the instantaneous rate of 

failure (hazard). The lower part shows a faint line that represents the longitudinal 

process. The starred line in longitudinal process represents the extended-Cox 

approximation of the longitudinal trajectory. From Figure 4, one can tell how the hazard 

function is associated with the longitudinal process, suggesting  the dependence 
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between the longitudinal process and survival process in time. The blue line indicates 

an assumption under time-dependent  Cox model which posits that the value of time 

dependent covariates remain constant between the visits, yet the line is staggered in the 

figure. 

 

Modelling the longitudinal outcome with Cox models seperately, will lead to an  

introduction of errors in the estimation of the longitudinal process if the two processes 

are associated  . This is where, the joint modelling of the longitudinal and survival data 

comes in for it takes into account both the exogenous and endogenous time-dependent 

covariates.  

 

However, in the absence of correlation between  longitudinal and survival outcomes, 

each outcome can be analysed separately (Marchenko, 2016) using the separate  

methods. Joint modelling of longitudinal and time-to-event data is an area of increasing 

research, which allows the simultaneous modelling of a longitudinal (repeatedly 

measured over time) outcome such as weekly biomarker measurements, and a time-to-

event (survival) outcome such as time to death (Sudell et al., 2016). The model is a 

combination of longitudinal and survival submodels that are linked using an association 

structure that quantifies the relationship between the outcomes of interest.   

 

There are various forms to joint modelling approach of longitudinal and survival data. 

The basic joint model which consists of one longitudinal and one survival outcome was 

introduced by Self and Pawitan (1992), further work was done by  DeGruttola and Tu 

(1994), Tsiatis et al. (1995), Faucett and Thomas (1996) and Wulfsohn and Tsiatis 

(1997).  Also , Taylor et al. (2005), Garre et al. (2008), Yu et al. (2008), Proust-Lima 
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and Taylor (2009) and Rizopoulos (2011) considered the joint modelling framework to 

derive individualized predictions for a longitudinal and a survival outcome that are 

updated at each new visit. However, in this project the focus is on joint models by 

Rizopoulus (2012)  whose focus is on individual’s survival. In the process, submodel 

specifics to joint modelling, likelihood functions, parameter estimation, and underlining 

statistical inference are introduced. In order to be in line with project objectives, an 

extension will be made to competing risks settings. Before introducing the submodels, 

here are reasons for joint modelling. 

 

2.16 Why Joint Modelling of Longitudinal and Survival Data? 

Longitudinal measures are commonly incomplete or may be prone to measurement 

errors. As the longitudinal covariates are measured with errors, there is a requirement 

for more complex analysis than one that treats covariates as fixed markers in survival 

models. The inclusion of  raw longitudinal measurements in the survival analysis leads 

to bias (Prentice, 1982). Studies on  joint models have been proposed to solve 

difficulties in Cox proportional hazard model with time-dependent covariates, which 

are possibly missing at some event times or subject to substantial measurement error 

(Brown & Ibrahim, 2003). In other cases, undertaking a joint model that evaluates both 

longitudinal and survival data simulteneously, reduces biases and improve precision 

over simpler approaches (Henderson et al.,2000). For example, if a particular drug 

reduces the hazard of a particular disease by 30%, then a joint model may lead to an 

estimated hazard ratio of 0.75, whereas a conventional model (eg, a Cox model ) that 

does not incorporate the longitudinal data into the analysis may yield a hazard ratio of 

0.80.  



 

47 

 

In this case, one says that the estimate based on the joint model is less biased than the 

Cox model estimate because 0.75 is closer to the true hazard ratio of 0.70 (Ibrahim, 

Chu, & Chen, 2010). Thus joint models provide efficient estimates of the treatment 

effects on both markers and on time to event of interest. When the longitudinal marker 

is correlated with a survival outcome, joint modeling framework shows superiority over 

modeling the two processes separately (Liu, 2016). 

 

Often, longitudinal and survival data are collected together, hence it may be important 

to investigate the relationship between the serial biomarker and event of interest. A 

paper by Andrinopoulou (2014) suggests that joint models are an appropriate statistical 

tool for assessing the progression of serial biomarkers accounting for patients drop-out 

due to reasons associated with the study. Next are models involved in joint modelling 

of longitudinal and survival data. 

 

2.17 Submodels in Joint Modelling 

As highlighted in section 2.1, joint model is a combination of longitudinal and survival 

submodels that are linked using an association structure that quantifies the relationship 

between the outcomes of interest. The model in this project is based on proposition by 

Rizopolous (2012). Let  𝑇𝑖
∗ be the true event time for the i-th subject , and let 𝑇𝑖 be the 

observed  event time, where 𝑇𝑖 = min (𝑇𝑖
∗, 𝐶𝑖), where 𝐶𝑖 is the censoring time. Let 𝛿𝑖 =

𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖), i.e. 𝛿𝑖 is unity  for the true event. Let also assume that  𝑚𝑖(𝑡)  is true or 

unobserved value of the longitudinal marker at time t. Then 𝑦𝑖(𝑡) is the observed value 

of the time dependent covariate at time t , and 𝑦𝑖𝑗(𝑡) = {𝑦𝑖(𝑡𝑖𝑗), 𝑗 = 1, 2, . . . , 𝑛𝑖}. The 

aim is to associate the true unobserved longitudinal outcome 𝑚𝑖(𝑡) with the hazard of 

an event.  
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Survival Submodel 

As stated under extended time dependent Cox regression model,  the standard relative 

risk model  is defined as : 

ℎ𝑖(𝑡|𝓜𝑖(𝑡)) = ℎ0(𝑡) exp(𝛾𝑇𝑤𝑖 + 𝜶(𝑚𝑖(𝑡)).                          (1*) 

Where 𝓜𝑖(𝑡) = {𝑚𝑖(𝑠), 0 < 𝑠 ≤ 𝑡} is longitudinal history of the unobserved,  ℎ0(𝑡) 

is the baseline hazard , and 𝑤𝑖 is a vector of baseline covariates. 𝜶 quantifies the 

strength of the association between the marker and the risk of an event / the effect of 

underlying longitudinal outcome to the risk for an event.  Model  regression coefficients 

are interpreted as seen in previous sections.  exp(𝛾𝑗) denotes the hazards ratio from one 

unit increase in j-th covariate, exp(𝜶) denotes relative increase in the risk of an event 

at time t resulting from one unit increase in 𝑚𝑖(𝑡).  

 

In survival analysis, it is important to consider all history for the covariate, and not  just 

a value 𝑚𝑖(𝑡). The survival function depends on full history of the marker. The survival 

function is: 

𝑆𝑖(𝑡|𝓜𝑖(𝑡)) = exp {− ∫ ℎ0(𝑡) exp(𝛾𝑇𝑤𝑖 + 𝜶(𝑚𝑖(𝑡))  𝑑𝑠
𝑡

0
}. 

 

In literature , Li et al. (2008), suggests that the baseline hazard is unspecified, however, 

Hsieh et al.(2006) suggested that to avoid misspecification of the underlying parametric 

distribution of the survival times which in turn leads to under-estimation of standard 

errors of  parameter estimates in the joint model settings, it is imperative to have it 

specified, using parametric forms as seen in section 2.8.  However, it is advisable  to 

use a more flexible form of model for the baseline hazard function. Here, are two 

possible forms for baseline hazard function by Rizopoulos (2012). 
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 Regression spline model 

In this model, the log baseline hazard function is given as: 

log ℎ0(𝑡) = 𝑘0 + ∑ 𝑘𝑑𝐵𝑑

𝑚

𝑑

(𝑡, 𝑞) 

where 𝑘𝑇 = (𝑘0, 𝑘1, . . . , 𝑘𝑚)  are the spline coefficients, q denotes the degree of the B-

splines basis function B(.) proposed by de Boor (1978) and the 𝑚 = 𝑚̈ + 𝑞 − 1  where 

𝑚̈ is the number of interior knots. 

 Piece-wise Constant model 

In this model, the baseline function, takes the form, 

ℎ0(𝑡) = ∑ ℇ𝑞𝐼(𝑉𝑞−1 < 𝑡 < 𝑉𝑞)
𝑄
𝑞=1  ,  

where  0 = 𝑣0 < 𝑣1 < 𝑣2 <. . . < 𝑣𝑄 , a partition of time scale with 𝑣𝑄 the largest than 

the largest observed time, and ℇ𝑞 the value of the hazard in the interval (𝑣𝑞−1, 𝑣𝑞]. 

In both models , as the number of knots increases, the specification of the hazard 

becomes more flexible. In both models, it is important to avoid overfitting and keep 

balance between bias and variance. However, there is no ideal strategy to achieve this, 

still Harrel (2001) gives a standard rule of thumb based on keeping the total number of 

parameters between 1/10 and 1/20 of the number of events in the sample. 

 ch-Laplace 

Under this method of specifying the baseline hazard, fully exponential Laplace 

approximation is used for integration over the random effects. The method is suitable 

where the subject specific longitudinal profiles are nonlinear and are modelled using 

higher dimensional random effects structures.  
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Longitudinal Submodel 

The previous relative risk submodel, uses the unobserved longitudinal value 𝑚𝑖(𝑡).  In 

order to determine the effect of the longitudinal outcome on the risk of an event, it is 

important to have 𝑚𝑖(𝑡)  estimated and  that the complete true longitudinal history 

𝓜𝑖(𝑡) is reconstructed. Our focus is on continuous longitudinal markers, and the 

mixed-effect regression model is given as: 

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝜀𝑖(𝑡) 

          = 𝛽𝑋𝑖
𝑇(𝑡) + 𝑍𝑖

𝑇(𝑡)𝑏𝑖 + 𝜀𝑖(𝑡), where 𝑚𝑖(𝑡) = 𝛽𝑋𝑖
𝑇(𝑡) +  𝑍𝑖

𝑇(𝑡)𝑏𝑖              (2
*)  

where 𝑋𝑖
𝑇 is the design vector of fixed coefficients 𝛽 , and 𝑍𝑖

𝑇 is a design vetor for 

random effects 𝑏𝑖. This vector 𝑏𝑖   is  a latent random variable that can be interpreted 

as subject specific effects of  𝑍𝑖
𝑇(𝑡), and 𝜀𝑖(𝑡) are random errors that are assumed to be 

independent and  normally distributed with mean zero and variance 𝛿2𝐼𝑛𝑖
, i.e 

𝜀𝑖(𝑡)~𝑁(0, 𝛿2𝐼𝑛𝑖
), for all 𝑡 ≥ 0.  

 

It is also assumed that 𝜀𝑖(𝑡) and 𝑏𝑖 are independent. This vector  𝑏𝑖, follows the same 

distribution and assumptions as seen in section 3.1, 𝑏𝑖~𝑁(0, 𝐷) and accounts for 

association between the longitudinal and the event processes, and the correlation 

between the repeated measurements in the longitudinal outcome. 

 

The joint model allows to settle that the longitudinal markers are a function of true 

unbserved longitudinal value 𝑚𝑖(𝑡)  and some error, an attribute absent in time-

dependent Cox model. In general, the joint model is given as a piece-wise function of  

equations (1*) and (2*) as shown below: 

{
𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) +  𝜀𝑖(𝑡) = 𝑋𝑖(𝑡)𝑇𝛽 + 𝑍𝑖(𝑡)𝑇𝑏𝑖 + 𝜀𝑖(𝑡) 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙  𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙 

ℎ𝑖(𝑡|𝓜𝑖(𝑡)) = ℎ0(𝑡) exp(𝛾𝑇𝑤𝑖 + 𝜶(𝑚𝑖(𝑡))     𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙      
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2.18 Parameter Estimation in the Joint Model 

 

In separate methods of analysis for  both longitudinal and survival data, maximum 

likelihood estimation procedures are used to estimate model parameters. In joint 

modelling settings, the same approach of maximum likelihood estimation is applied by 

Rizopoulos (2012) to approaximate model parameters. Prior to estimation, the 

likelihood formulation in the joint modelling process, and estimation process are 

discussed. 

 

 2.18.1 Likelihood Function in the Joint Model 

 

As previously specified in section 2.17 under the longitudinal submodel of the joint 

model, 𝑏𝑖 account for association between the failure process and the repeated 

longitudinal observations for the outcome variable. The vector of random effects also 

account for correlation between the repeated longitudinal measurements.  

 

In the joint likelihood formulation of longitudinal and survival data (𝑇𝑖, 𝛿𝑖, 𝑦𝑖), the 

survival and longitudinal processes are assumed to be  conditionally independent given 

the vector of random effects 𝑏𝑖.  The model also posits that the repeated measurements 

of the longitudinal outcome are independent of each other.  Under above assumptions, 

thus  

𝑝(𝑇𝑖 , 𝛿𝑖, 𝑦𝑖   |𝑏𝑖, 𝜃𝑖) = 𝑝((𝑇𝑖 , 𝛿𝑖  |𝑏𝑖, 𝜃𝑖)𝑝(𝑦𝑖   |𝑏𝑖, 𝜃𝑖) and  

𝑝( 𝑦𝑖  |𝑏𝑖, 𝜃𝑖) = ∏ 𝑝( 𝑦𝑖𝑗   |𝑏𝑖)

𝑗

 

where 𝜽 = (𝜃𝑡
𝑇 , 𝜃𝑦

𝑇 , 𝜃𝑏
𝑇)𝑇  denotes the parameter vector for the event time outcome, the 

longitudinal outcomes and the random effects variance-covariance matrix respectively.  
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Thus, the joint likelihood contribution for the 𝑖𝑡ℎ  subject  as proposed by  Tsiatis and 

Davidian (2004) is : 

𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑖; 𝜃𝑖) = ∫ 𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑖, 𝑏𝑖 ; 𝜃𝑖)𝑑𝑏𝑖 

𝑝(𝑇𝑖, 𝛿𝑖, 𝑦𝑖; 𝜃𝑖) = ∫ 𝑝(𝑦𝑖 |𝑏𝑖)𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑖; 𝜃𝑡 , 𝛽) 𝑝(𝑏𝑖) 𝑑𝑏𝑖 

= ∫{ℎ(𝑇𝑖|ℳ𝑖(𝑇𝑖);  𝜃)𝛿𝑖𝑆(𝑇𝑖|ℳ𝑖(𝑇𝑖);  𝜃)} [∏ 𝑝( 𝑦𝑖(𝑡𝑖𝑗)  |𝑏𝑖;  𝜃𝑦)

𝑗

] 𝑝(𝑏𝑖) 𝑑𝑏𝑖 

where 𝑏𝑖 explains the interdependencies, and 𝑝(. ) is  the probability density function 

and 𝑆𝑖(𝑡|𝑏𝑖) = exp (− ∫ ℎ0(𝑠) exp(𝛾𝑇𝑤𝑖 + 𝜶(𝑚𝑖(𝑠))
𝑡

0
𝑑𝑠 is the survival function 

which depends on the whole longitudinal history. Also the product  

∏ 𝑝( 𝑦𝑖(𝑡𝑖𝑗)  |𝑏𝑖;  𝜃𝑦)

𝑗

𝑝(𝑏𝑖)

=  (2𝜋𝛿2)
−𝑛𝑖

2 exp {−
∥ 𝑦𝑖𝑋𝑖 𝛽 − 𝑍𝑖𝑏𝑖 ∥2

2𝛿2
}

× (2𝜋)−
𝑞𝑏
2 det(𝐷)−

1
2exp (−

𝑏𝑖
𝑇𝐷−1𝑏𝑖

2
) 

where  𝑞𝑏 denotes the dimensionality of the random effects vector, and ∥. ∥ denotes 

Euclidean vector norm. 

 

The joint log-likelihood function with respect to 𝜃 is given as: 

𝑙(𝜃)

= ∑ 𝑙𝑜𝑔 ∫{ℎ(𝑇𝑖|ℳ𝑖(𝑇𝑖);  𝜃)𝛿𝑖𝑆(𝑇𝑖|ℳ𝑖(𝑇𝑖);  𝜃)} [∏ 𝑝( 𝑦𝑖(𝑡𝑖𝑗)  |𝑏𝑖;  𝜃𝑦)

𝑗

] 𝑝(𝑏𝑖) 𝑑𝑏𝑖

𝑛

𝑖=1

 

 

The maximization of this log likelihhod function, demands the optimization algorithms  

and numerical integration techniques to be applied. The existence of integrals in the 
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random effects, and the survival function that formulate the joint likelihood , result in 

no closed form solution, since it may be of high dimension hence approximated 

numerically. Standard numerical integration techniques such as Monte Carlo, Gausian 

quadrature, Laplace approximation and Expectation-Maximization techniques are 

applied. The latter receives more preference in literature than the others. As decribed 

by Wulfsohn and Tsiatis (1997), E-M algorithm intuitively involves treating the random 

effects as missing data, where in Expectation step, the missing data are filled, and the 

log-likelihood function of the observed data is replaced with a surrogate function, and 

maximization step where the surrogate function is maximized. Recently, Rizopoulos et 

al (2009) introduced a hybrid algorithm for maximazation of log likelihood  which start 

with EM and continue with quasi-Newton (direct maximization). 

 

 2.18.2 Random Effects Estimation 

In joint modelling, it is also important to consider estimation of subject-specific effects 

on their outcomes. The random effects 𝑏𝑖 are estimated using Bayes Theory. As 

introduced by Rizopoulos (2012), assuming  𝑝(𝑏𝑖, 𝜃) as the posterior distribution, and 

𝑝(𝑇𝑖, 𝛿𝑖| 𝑏𝑖;  𝜃)𝑝( 𝑦𝑖(𝑡𝑖𝑗) |𝑏𝑖;  𝜃) as conditional likelihood part, the condition posterior 

distribution of 𝑏𝑖 is :  

  𝑝(𝑏𝑖|𝑇𝑖, 𝛿𝑖 , 𝑦𝑖 ; 𝜃) =
𝑝(𝑇𝑖, 𝛿𝑖|𝑏𝑖;  𝜃)𝑝( 𝑦𝑖(𝑡𝑖𝑗) |𝑏𝑖;  𝜃)𝑝(𝑏𝑖; 𝜃)

𝑝(𝑇𝑖,𝛿𝑖,𝑦𝑖,𝜃) 
 

                                    ∝ 𝒑((𝑇𝑖, 𝛿𝑖|𝑏𝑖;  𝜃)𝑝( 𝑦𝑖(𝑡𝑖𝑗) |𝑏𝑖;  𝜃)𝑝(𝑏𝑖;  𝜃) 

This has no closed form solution, and numerical methods are applied to approximate 

the random effects. Standard summary measures for the posterior distribution are given 

as: 
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𝑚𝑒𝑎𝑛: 𝑏𝑖̅ = ∫ 𝑏𝑖 𝑝(𝑏𝑖|𝑇𝑖, 𝛿𝑖 , 𝑦𝑖 ; 𝜃)𝑑𝑏𝑖 

𝑚𝑜𝑑𝑒:  𝑏𝑖̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏(𝑙𝑜𝑔  𝑝(𝑏𝑖|𝑇𝑖, 𝛿𝑖 , 𝑦𝑖 ; 𝜃) 

The impressive part about this distribution is that as the number of repeated  

longitudinal measurements increases , the distribution converges to normal distribution. 

 

2.19 Competing Risks Joint Models 

As seen in section 2.9, there are situtions when apart from an event of interest, there 

may be competing risks. In this section, an extension is made to standard joint model 

for longitudinal and survival data, to accomodate the competing risks settings. Though, 

joint modelling apparoach has been an increasing area of research, much of the research 

on joint modelling of longitudinal and survival data  have been focused on data with a 

single event time and a single mode of failure, combined with an assumption of 

independent censoring of event times (Tsiatis & Davidan, 2004). However, in some 

situations interest lies with more than one possible cause of event or where the 

censoring is informative.  Some considerable works on joint modelling of longitudinal 

and survival data in competing risks settings has been done by  Gueorguieva et 

al.,(2012) ; Andrinopoulou et al., (2014) and  Proust-Lima et al., (2016), Hevia, (2014) 

and others. In all work by above authors, cause- specific hazard regression and mixed 

effect models are used, with an extension to the relative risk model for basic joint model 

to account for competing risks. 

 

The cause-specific model, postulates relative risks models for each of the competing 

event  type. The idea behind these models is to couple a  cause- specific hazard model 

for the continuous time-to-event  process with a mixed-effects regression  model for 

the longitudinal outcome. 
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Assuming one has K different event types, let 𝑇𝑖1
∗  , 𝑇𝑖2

∗ , . . . , 𝑇𝑖𝐾
∗  be the true failure times 

for K event types. Let 𝑇𝑖 be the observed failure time such that 𝑇𝑖 =

min (𝑇𝑖1
∗ , . . . , 𝑇𝑖𝐾

∗ , 𝐶𝑖), where 𝐶𝑖 is the censoring time. Let 𝐷𝑖 takes the values 

{0, 1, 2, … , 𝑔}, with 𝛿𝑖 = 0 indicating a censored event and 𝛿𝑖 = 𝑘 showing that subject 

𝑖  fails from the 𝑘 − 𝑡ℎ type of failure, where 𝑘 = 1, . . . , 𝑔. The relative risk model for 

competing risks is now the cause-specific hazard model given as: 

ℎ𝑖𝑘(𝑡|𝓜𝑖(𝑡)) = ℎ0𝑘(𝑡) exp(𝛾𝑘
𝑇𝑤𝑖 + 𝜶𝒌(𝑚𝑖(𝑡)) 

where  𝑤𝑖 vector of  baseline  covariates, 𝑚𝑖(𝑡) true value of the longitudinal marker 

with   𝓜𝑖(𝑡) = {𝑚𝑖(𝑡), 0 ≤ 𝑠 < 𝑡}. The corresponding mixed effects model is given 

by: 

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝜀𝑖(𝑡) 

           = 𝛽𝑋𝑖
𝑇(𝑡) + 𝑍𝑖

𝑇(𝑡)𝑏𝑖 + 𝜀𝑖(𝑡),     𝑏𝑖~𝑁(0, 𝐷) and 𝜀𝑖(𝑡)~𝑁(0, 𝛿2 𝐼𝑛𝑖
) 

Parameter estimation is just the same as in the basic joint model, with some changes to 

the likelihood formulation. For competing risks and longitudinal outcomes joint model, 

the likelihood is given as:  

𝑝(𝑇𝑖 , 𝛿𝑖|𝑏𝑖; 𝜃𝑡 , 𝛽)

= ∏[ℎ0𝑘(𝑇𝑖) exp(𝛾𝑘
𝑇𝑤𝑖 + 𝜶𝒌(𝑚𝑖(𝑡))]

𝐼(𝛿𝑖=𝑘)
𝐾

𝑘=1

× exp (− ∑ ∫ ℎ0𝑘(𝑠) exp(𝛾𝑘
𝑇𝑤𝑖 + 𝜶𝒌(𝑚𝑖(𝑠))

𝑇𝑖

0

𝐾

𝑘=1

𝑑𝑠) 

 

In the likelihood function, the baseline hazard is estimated using regression spline 

method, as in section 4.3. 
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     2.19.1 Assessing Model Assumptions in competing risks joint model  

In mixed-effects and cause-specific hazard models, there are methods that are used to 

test model assumptions . In joint modelling alone, Rizopoulos (2012), propose the use 

of multiple imputation residuals with the fixed visit times to validate the model 

assumptions.  However, when the  longitudinal data, survival data, and competing risks 

components  are  amalgamated, the assessment of model assumptions becomes 

complicated.  
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CHAPTER 3 

METHODOLOGY 

 

In the previous Chapter, methods for analysis of longitudinal and survival data that  are 

collected in biomedical studies are discussed. Next, is to apply the methods for joint 

modelling of survival data with competing risks and repeated measures of  longitudinal 

data to real data. This section presents an overview of  the data that are used for analysis 

of this project. It also explains the statistical package  that is used for the analysis of the 

data.  

 

3.1 Methods 

The data used for this project is part of the primary dataset that was collected from a 

randomized controlled trial that aimed at evaluating strategies to delay the emergency 

of resistance to anti-malarial drugs in children by Malawi Liverpool Wellcome Trust 

and College of Medicine in 2001 to 2003 (Bell et al., 2008). For the primary study, 

written informed consent was required from the parent of each child recruited and the 

study was explained in parent’s preferred language . The study protocol was approved 

by ethics committees of the College of Medicine, University of Malawi, and Liverpool 

School of Tropical Medicine. 

 

The study primarily targeted children aged 12 to 60 months of age, weight ≥ 6 𝑘𝑔,  no 

feature of severe malaria (event of interest)  on enrollment, hemoglobin ≥ 5.0𝑔/𝑑𝑙 was  

measured using hamocue. The children were randomized to four treatment armsnamely, 
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Sulfadoxine-Pyrimethamine(SP),Chloroquine(CQ) + Sulfadoxine-Pyrimethamine(SP),  

Amodiaquine(AQ) + Sulfadoxine-Pyrimethamine(SP) and Artesunate (ART) + 

Sulfadoxine-Pyrimethamine (SP) and followed up for a  period of six weeks.  

The children  were recruited at, and followed up from, Chileka Health Centre which is 

about 19 kilometers from Queen Elizabeth Central Hospital (QECH), and serves all the 

immediate needs of the local population, referring major problems to QECH.  

 

All children were also required to provide venous and capillary blood samples on 

assessment days for parasite microscopy. From the blood samples taken from the 

children,  biomarkers such as hemoglobin, white cell count, red blood cell count, 

platelets , creatinine and Bilirubin were examined in full blood count.  Children were 

considered pure, with P. falciparum parasitaemia parasite density  between 2000 to 200 

000 parasites per 𝜇𝑙.  Children were  removed from the primary study after enrolment 

if their full blood count showed severe anaemia, that is hemoglobin  level less than 5 

g/dl.  On the other hand, during follow-up withdrawal was based on adverse reactions 

to the randomised drug, protocol violation and consent withdrawal. 

 

The study was a double blinded trial as all members of study team and patients were 

uninformed of study treatments allocation.  The patients  were assessed on days 0, 7, 

14, 28 and 42 and any other day if unwell. In order to obtain this data, one of the 

supervisors who was part of the study team had rights to share the data for academic 

purposes and other use. 
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3.2 Outcomes of Interest 

For a period of two years, the study recruited 500 children in all treatment arms. 

However in this project,  data that was collected in 2001 were used,  which consist of 

101 children. The study managed to collect baseline characteristics of children such as 

age in months, sex, and  body weight in kilograms(kg).  During follow up, the repeated 

longitudinal measurements for hemoglobin and parasite counts were recorded. This 

study uses longitudinal outcomes of hemoglobin level, collected on days, 0 ,7 , 14 , 28, 

and 42  and parasites counts recorded on same visit times.  

 

Time to severe malaria/ treatment failure  was an outcome of interest, in the presence 

of a competing risk of withdrawal from the study . In the study, withdrawal  was due to 

adverse reaction to the  drugs used, protocol violation and consent withdrawal as a 

competing risk for severe malaria. All the children that were withdrawn on above 

grounds, were considered withdrawn on reasons associated with the study in this 

project. Status indicator for subjects that dropped out of the study from other unknown 

reasons, loss to follow up (censored), severe malaria, and withdrawal was defined.  

 

3.3 Statistical Analysis 

The data for this project were analyzed using a statistical package R version 3.5.1. 

Firstly, descriptive statistics for baseline covariates and other biomarkers were 

presented. Then seperately, longitudinal mixed-effects models for  longitudinal 

outcomes,  hemoglobin and parasite counts were applied to this data set, leaving aside 

the survival models.  

 



 

60 

 

The next models are competing risks models where two different failures of  severe 

malaria and withdrawal were taken into account, by including the baseline covariates. 

Finally, in order to meet the objectives of the study, joint models were applied to 

competing risks data. Since there were two longitudinal outcomes, they could not be 

included in the joint model at the same time. As a result,  models were fitted  for each 

of the repeated longitudinal outcomes.  

 

 3.3.1 Mixed-effects Model for Real Data 

In this case, two separate mixed effects models of hemoglobin and parasites counts with 

fixed and random effects were considered. Let 𝑦ℎ,𝑖 and 𝑦𝑃,𝑖 denote the hemoglobin level 

and parasite counts for the i-th individual, 𝑖 = 1, … , 𝑛. Then  

𝑦ℎ,𝑖 = 𝛽ℎ,0 + 𝛽ℎ,1 𝑠𝑒𝑥𝑖 + 𝛽ℎ,2 𝑎𝑔𝑒𝑖 + 𝛽ℎ,3 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽ℎ,4 𝑡𝑖𝑚𝑒𝑖 + 𝛽ℎ,5 𝑡𝑟𝑒𝑎𝑡𝑖 +

𝑏ℎ,0𝑖 + 𝑒ℎ,𝑖                                                                                        (3) 

𝑦𝑃,𝑖 = 𝛽𝑃,0 + 𝛽𝑃,1 𝑠𝑒𝑥𝑖 + 𝛽𝑃,2 𝑎𝑔𝑒𝑖 + 𝛽𝑃,3 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽𝑃,4 𝑡𝑖𝑚𝑒𝑖 +  𝛽𝑝,5 𝑡𝑟𝑒𝑎𝑡𝑖 +

𝑏𝑃,0𝑖 + 𝑒𝑃,𝑖,                                                                                       (4) 

where sex, age, weight, time, and treatment are baseline covariates, 𝛽ℎ,0, 𝛽ℎ,1 , 𝛽ℎ,2 , 

𝛽ℎ,3 , 𝛽ℎ,4 , 𝛽ℎ,5 are coefficients for baseline covariates respectively, and 𝑏ℎ,0𝑖  and 𝑒ℎ,𝑖 

are random effect and errror terms.  

 

The models above are for longitudinal biomarker hemoglobin and parasite counts 

respectively. The model for hemoglobin  assume that sex, age,  and weight,  are fixed 

effects, with random slope of subjects (patients). The model assumes that there may be 

different longitudinal profiles from subject to subject. It also assumes that the random 

effects and the random errors come from normal distribution, just as discussed 
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previously. The model for estimated parasites counts includes the random-slope of 

subjects, with the same underlying assumptions as the hemoglobin model. 

 

 3.3.2 Competing Risks  Survival Model for Real Data 

The competing risks survival models for the severe malaria and withdrawal with 

baseline covariates, age, sex, treatment, weight, baseline hemoglobin level, and parasite 

counts are the extended  time-dependent cause-specific Cox models with  no interaction 

and  given as:  

ℎ𝑖 𝑠𝑚(𝑡) = ℎ0𝑠𝑚(𝑡) exp{𝛾1𝑠𝑚,𝑡𝑟𝑒𝑎𝑡𝑖 + 𝛾2𝑠𝑚𝑎𝑔𝑒𝑖 + 𝛾3𝑠𝑚𝑠𝑒𝑥𝑖 + 𝛾4𝑠𝑚𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛾5𝑠𝑚ℎ𝑏0

+ 𝛾6𝑠𝑚𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒0} 

 

In this model, since severe malaria is an event of interest, withdrawal is treated as 

censored in addition to usual censored observations, resulting from lost to follow-up. 

In the similar manner, the extended time-dependent cause-specific model for 

withdrawal, treating severe malaria and lost to follow-up as censored is given as: 

ℎ𝑖 𝑤𝑑,𝑘(𝑡) = ℎ0𝑤𝑑(𝑡) exp{ 𝛾1𝑤𝑑𝑡𝑟𝑒𝑎𝑡𝑖 + 𝛾2𝑤𝑑𝑎𝑔𝑒𝑖 + 𝛾3𝑤𝑑𝑠𝑒𝑥𝑖 + 𝛾4𝑤𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑖 +

𝛾5𝑤𝑑ℎ𝑏0 + 𝛾6𝑤𝑑𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒0 }.    

     

 3.3.3 Joint Models for  Real  Data with Competing Risks and Longitudinal 

Markers 

In order to evaluate the relationship between the longitudinal marker and severe malaria 

in the presence of competing risk of withdrawal, two separate joint models were 

analyzed, each including a different longitudinal outcome. The  longitudinal markers 

of hemoglobin and parasite counts separated by the event type of severe malaria or 

withdrawal were considered.  
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This approach is recommended when focus is on survival outcome and allows the 

evaluation of the impact of serial longitudinal markers. As detailed in section chapter 

2, section 2.7 and subsection 2.10.1, the true submodels in joint modeling approach are 

as follows: 

 The longitudinal mixed effect submodel for hemoglobin. 

𝑦ℎ,𝑖 = 𝛽ℎ,0 + 𝛽ℎ,1 𝑠𝑒𝑥𝑖 + 𝛽ℎ,2 𝑎𝑔𝑒𝑖 + 𝛽ℎ,3 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽ℎ,4 𝑡𝑖𝑚𝑒𝑖 + 𝛽ℎ,5 𝑡𝑟𝑒𝑎𝑡𝑖 + 𝑏ℎ,0𝑖 

+ 𝑒ℎ,𝑖 

 Survival  submodels for hemoglobin 

{
ℎℎ,𝑖 𝑠𝑚(𝑡) = ℎℎ,0𝑠𝑚(𝑡)exp [𝛾ℎ,1𝑠𝑚𝑠𝑒𝑥𝑖 + 𝛾ℎ,2𝑠𝑚𝑎𝑔𝑒𝑖 + 𝛾ℎ,3𝑠𝑚𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽ℎ,𝑠𝑚4 𝑡𝑟𝑒𝑎𝑡𝑖 + 𝜕ℎ,𝑠𝑚𝑚ℎ,𝑖(𝑡)]

ℎℎ,𝑖 𝑤𝑑(𝑡) = ℎℎ,0𝑤𝑑(𝑡)exp [𝛾ℎ,1𝑤𝑑𝑠𝑒𝑥𝑖 + 𝛾ℎ,2𝑤𝑑𝑎𝑔𝑒𝑖 + 𝛾ℎ,3𝑤𝑑𝑤𝑒𝑖𝑔ℎ𝑖 + 𝛽ℎ,𝑤𝑑4 𝑡𝑟𝑒𝑎𝑡𝑖 + 𝜕ℎ,𝑤𝑑𝑚ℎ,𝑖(𝑡)]
 

Here  𝑚𝐻,𝑖(𝑡) is the true value of the longitudinal marker hemoglobin. Similary, the 

longitudinal submodel for parasites is given as follows: 

𝑦𝑃,𝑖 = 𝛽𝑃,0 + 𝛽𝑃,1 𝑠𝑒𝑥𝑖 + 𝛽𝑃,2 𝑎𝑔𝑒𝑖 + 𝛽𝑃,3 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽𝑃,4 𝑡𝑖𝑚𝑒𝑖 + 𝛽𝑝,5 𝑡𝑟𝑒𝑎𝑡𝑖

+ 𝑏𝑃,0𝑖 + 𝑒𝑃,𝑖 

 

And the corresponding survival submodel are: 

{
ℎ𝑝,𝑖 𝑠𝑚(𝑡) = ℎ𝑝,0𝑠𝑚(𝑡)exp [𝛾𝑝,1𝑠𝑚𝑠𝑒𝑥𝑖 + 𝛾𝑝,2𝑠𝑚𝑎𝑔𝑒𝑖 + 𝛾𝑝,3𝑠𝑚𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝛽𝑝,𝑠𝑚4 𝑡𝑟𝑒𝑎𝑡𝑖 + 𝜕𝑝,𝑠𝑚𝑚𝑝,𝑖(𝑡)]

ℎ𝑝,𝑖 𝑤𝑑(𝑡) = ℎ𝑝,0𝑤𝑑(𝑡)exp [𝛾𝑝,1𝑤𝑑𝑠𝑒𝑥𝑖 + 𝛾𝑝,2𝑤𝑑𝑎𝑔𝑒𝑖 + 𝛾𝑝,3𝑤𝑑𝑤𝑒𝑖𝑔ℎ𝑖 + 𝛽𝑝,𝑤𝑑4 𝑡𝑟𝑒𝑎𝑡𝑖 + 𝜕𝑝,𝑤𝑑𝑚𝑝,𝑖(𝑡)]
 

where  𝑚𝑝,𝑖(𝑡) is the true value of the longitudinal marker parasite counts. 
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CHAPTER 4 

RESULTS 

 

This chapter presents the analysis results obtained in R version 3.5.1, after analyzing 

the malaria data. Firstly, the chapter presents the basic descriptive statistics and then 

the  separate models for longitudinal and survival malaria data. In the last part of this 

chapter,  the joint models applied to real malaria data in the presence of competing risk 

of withdrawal are presented followed by model comparision for the separate  and 

competing risks joint  models. 

 

4.1 Basic Descriptive Analysis 

This study used  data for 101 children. In this study,  male children (57.4%) and female 

children (42.6%) data were analyzed. The children  were on average aged 2.22 years    

(std=1.12) . The average body  weight of the chidren was 11.03 kilograms and  the  

median follow-up time of 28 days.  The different outcomes that were observed are 

severe malaria (5.0%) and withdrawal (10.9%). In the  competing risks analysis, severe 

malaria was an event of interest and withdrawal as a competing risk. The remaining 

children (84.2%) were censored in the analysis. The clinical biomarkers considered in 

the analysis were parasites and hemoglobin level. The analysis used measurements 

obtained on visit days 0, 7, 14, 28 and 42, for parasites and hemoglobin longitudinal 

measurements. The results, report an average of  six  parasite count and an average of 

9.38 g/dl hemoglobin level for the baseline data on day 0.  
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In Figure 5 are boxplot graphics for  the two longitudinal biomarkers, parasites and  

hemoglobin levels seperated by  the event types, and barplots for treatment and sex 

against the event type. 

 

 

Figure 5: Baseline explanatory variables classified by event type a patient experienced: 

0 for censored event, 1 for severe malaria and 2 for withdrawal. 
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For  children that failed (experienced severe malaria), there were more males than 

females and the same was the case for children who experienced withdrawal in the 

course of the study. As can be observed in Figure 5, the median hemoglobin level for 

children that experienced severe malaria is slightly the same as  the medians  for 

hemoglobin levels of children that were censored and withdrawn from the study. It was 

also observed that the medians  number of  parasites were the same in all event types. 

 

On randomized treatment and severe malaria experinece, children that were randomized 

to treatment arm “Chloroquine and Sulfadoxine-pyrimethamine (SP+ AQ)” had slightly 

more cases of severe malaria than those in the other treatment arms that experienced 

severe malaria. The numbers of patients that were withdrawn seemed to be slightly the 

same in all treatment arms except in the Sulfadoxine-pyrimethamine group.  

 

4.2 Linear Mixed-Effects Models 

As highlighted previously, this section presents the linear mixed-effects model to 

describe the evolution in time of longitudinal biomarkers, hemoglobin level and  

parasites.  

 

In Figure 6, subject-specific evolutions in time of the longitudinal biomarkers  

hemoglobin level and parasites measurements are presented. From Figure 6, it was 

observed that subjects showed similar variability in their longitudinal profiles for 

hemoglobin and parasite in all treatment groups. 
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Figure 6: The individual hemoglobin and parasites profiles over time in days seperated 

by treatment that a patient received. 

 

Next the mixed effects regression models for the malaria data are presented  as stated 

in section 3.3.1.  

Table 2 summarizes the fitted mixed-effects regression models for hemoglobin and 

parasites counts. 
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From the table, the results suggest that time was statistically significant predictor of the 

longitudinal scores of   hemoglobin levels, with hemoglobin level increasing by 0.03 

g/dl  units for any passing day (s.e = 0.004). The intercept was also statistically 

significant,  implying that the value for hemoglobin level is 8.38 g/dl, when all 

parameters are zero (s.e=0.65).  

 

For the parasite count scores, the results show that the intercept was statistically 

significant in predicting the parasite counts, with parasite counts of six parasites when 

all other parameters are zero.  The parasite counts for male patients increase by two 

parasites  than the parasite counts for female counterparts, however this  result is not  

statistically significant. The other variables, time , age and weight and treatment were 

not statistically significant in the prediction of  parasite counts. 
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Table 2: Fitted values for the linear mixed-effects models for the longitudinal 

variables hemoglobin level,  and parasite counts with  standard deviations 

(sde), and the p-values 

 

_____________________________________________________________________ 

                                 Slope                            SE                                                   p-value 

 

Hemoglobin  

βH,0 (Intercept)         8.38                              0.65                                              < 0.0001                         
                               
βH,1  (sexmale)        -0.05                              0.22                                                   0.835 

 

βH,2  (age)                 0.12                              0.14                                                   0.376 

βH,3  (weight)           0.06                               0.07                                                   0.409 

βH,4  (time)               0.03                              0.004                                              < 0.0001 

βH,5  (SP+CQ)          0.19                              0.31                                                   0.549 

βH,5  (SP+AQ)        -0.13                               0.32                                                   0.695 

βH,5  (SP+ART)       0.20                               0.32                                                   0.528 

Random effects  

bH,0i  (Intercept)                                          0.89 

Residual                                                        1.10  

Loglik:                  -623.9                        BIC: 1306.7 

Parasites  counts                 

βp,0  (Intercept)          5.61                          2.30                                                   0.016 

βp,1  (sexmale)           1.55                           0.79                                                   0.054 

βp,2   (age)                -0.46                           0.49                                                   0.345 

βp,3   (weight)            0.08                           0.24                                                   0.744 

βp,4   (time)              -0.01                           0.01                                                   0.493 

βH,5  (SP+CQ)           0.30                           1.10                                                   0.786  

βH,5  (SP+AQ)         -0.59                           1.14                                                    0.608 

βH,5  (SP+ART)        0.65                           1.13                                                    0.568 

Random effects 

bp,0i  (Intercept)                                        3.52                                                

Residual                                                      2.76 

Loglik:                      -988.2                   BIC: 2035.4 

_____________________________________________________________________ 
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4.3. Survival Competing Risks Models 

In competing risks settings, the cumulative incidence curves for the two competing 

events , severe malaria and withdrawal, accounting for failure times and the cause of 

the failure were estimated. Graphically, the cumulative incidence functions provide an 

insight of how the events of severe malaria and withdrawal evolve over time. 

 

Figure 7: Cumulative incidence curves for the two competing events, severe  

       malaria and withdrawal. 

 

The cumulative incidence rates are higher for an event of withdrawal (study related 

conditions) than cumulative incidence rate for severe malaria, with more withdrawal 

events between day 0 and day 10. 

In Table 3, parameter estimates and standard errors after fitting the cause-specific 

hazard regression models for the two events, severe malaria and withdrawal are 

presented.  
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Table 3:  Fitted values for the competing risk models.  

 

Parameter Log(RR) SE p-value 

CQ + SP   

 

CQ + SP : CR                               

 0.25 

 

1.6e-15                                

   0.74 

 

   1.05                                                                           

0.737 

 

1.000 

AQ + SP   

 

AQ + SP: CR                                 

  0.060 

 

 1.0e-15                                    

   0.80 

 

   1.13                                                                            

0.940 

 

1.000            

 

ART+ SP 

 

ART+ SP:CR                               

-0.03 

 

2.0e-15                                  

   0.81 

 

   1.15                                                                                   

0.969 

 

1.000 

 

Age 

 

Age: CR                       

-0.03 

 

 8.1e-16                               

   0.34 

 

   0.49                                                                               

0.369 

 

1.000 

Weight 

 

Weight: CR                    

 0.212 

 

-5.5e-16                                

   0.16  

 

   0.23                                                                             

0.189 

 

1.000 

Sexmale   

 

Sexmale: CR                  

  0.49  

             

-9.6e-16   

                 

   0.56 

  

   0.79                                                                                

0.377 

 

1.000 

Hb0 

Hb0 : CR 

 0.09 

-5.5e-16 

   0.17 

   0.24 

0.596 

1.000 

Parasite0 

Parasite0: CR 

 0.04 

-5.9e-17 

   0.05 

   0.07 

0.416 

1.000 

 

 

 

Considering the results in Table 3, it was observed that  the relative risk for severe 

malaria  increased by exp(0.21) = 1.24 (HR) for unit  increase in body weight of the 

child. Also, the risk of severe malaria is reduced by exp (- 0.03 ) = 0.73 (73.4%) in 

older children than in younger children. However, these results are not statistically 

significant in predicting the risk of  severe malaria. The covariates: sex, and treatment 

were not statistically significant in predicting the risk of severe malaria.  

All the covariates were not  statistically significant in predicting the hazard for the 

competing risk event ‘ withdrawal’. It also observed that in the extended time-

dependent Cox model, the baseline longitudinal markers of hemoglobin and parasite 
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counts showed no association with the hazards of severe malaria and the competing 

event withdrawal 

 

4.4 Joint Modelling and Competing risks Models 

In order to evaluate the relationship between the longitudinal scores of parasite counts 

and  hemoglobin and the risk of severe malaria in the presence of competing risk 

withdrawal, one of the recommended approaches is to plot the longitudinal scores of 

parasites and  hemoglobin seperated by  event type that occured. This approach works 

when an interest is on survival outcome, and allows evaluation of impact of  

longitudinal outcome on survival (Hevia, 2014). 

 

In Figure 8, the longitudinal progression of parasites count, and hemoglobin separated 

by the event type that a patient experienced with the fitted lines are shown. The results 

in Figure 8,  showed that  for the patients that experienced severe malaria, as the 

parasites were clearing  probably due to patients taking the randomised medication, the 

hemoglobin levels for the patients were decreasing between day 0 and day 14.  The 

behaviour was different for patients that were withdrawn, who had their hemoglobin 

level  and parasite counts increasing between day 0 and day 10. 
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Figure 8: Longitudinal scores showing the progression of hemoglobin , and parasite 

variables separated by the event type. 
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Table 4: Estimates for competing risks survival and longutudinal parasite count 

      processes in joint model settings 

 

                                 EVENT PROCESS 

Parameter RR SE p-value 

CQ + SP   

CQ + SP : CR                               

 2.33  

 1.00   

1.23 

1.14        

    0.491 

    0.999 

AQ + SP   

AQ + SP: CR                                 

 1.08  

 0.96   

1.26  

1.23        

    0.952 

    0.975 

ART+ SP 

ART+ SP:CR                               

 1.08  

 0.99   

1.28   

1.20      

    0.953 

    0.998 

Age 

Age: CR                       

 0.32   

 1.02   

0.58   

0.62                     

    0.058 

    0.977 

Weight 

Weight: CR                    

 1.82   

 0.99  

0.27     

0.26              

    0.025 

    0.988 

Sexmale   

Sexmale: CR                  

 6.75  

 1.04  

0.93  

0.97               

    0.040 

    0.965 

Assoct:  

Assoct :CR                    

 0.27  

 1.01   

0.25  

0.32                        

 <0.0001 

    0.988 

                                 LONGITUDINAL PROCESS (parasite count) 

                                  Slope 

Intercept  6.88               1.57              <0.0001 

Time -0.03    0.01                    0.028 

Sexmale  2.04   

 

 0.61                    0.001 

Age -0.17    0.37                       0.642 

Weight -0.18   

 

 0.16                     0.261 

CQ + SP   

 

 0.94   

 

 0.85                0.268 

AQ + SP   

 

-0.02    0.85                0.985 

ART+ SP 

 

1.38  0.88              0.116 

Random effects 

 

Intercept 

 

Residual 

 

 

 

 

 3.68 

 

 2.97 

 

 

Log-Lik 

BIC 

-1134.2 

 2344.3 
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Results in Table 4, indicated that in joint modelling setting of longitudinal biomarker 

parasite count and the cause-specific hazard model processes, body weight of the child 

was significantly associated with the risk of severe malaria. With any unit increase in 

body weight, the relative hazard of severe malaria was increasing by 1.82 (HR). The 

true parasite count was also strongly associated with the risk of severe malaria, such 

that for a unit decrease in true parasite count, the relative  hazard of severe malaria was 

decreasing by  0.27 (27.3%). The sex of an individual was also statistically associated 

with the risk of severe malaria, with relative risk of  6.76 (HR) higher in male patients 

than in female counterparts. The covariates, including the true parasite counts were not 

statistically significant in predicting the risk of withdrawal.  On the longitudinal 

process, sex was strongly associated with the longitudinal scores of parasite counts, 

with two parasite counts more in male patients than in  female patients. Also, with each 

passing day, the parasite counts were decreasing by -0.03 counts, as time was strongly 

associated with parasite counts. The intercept was also significant, with parasite counts 

of seven when other parameters in the model equal to zero.  
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Table 5:  Estimates for a fitted joint model for longitudinal marker hemoglobin 

and  competing risks survival processes  

                                 EVENT PROCESS 

Parameter RR SE p-value 

CQ + SP   

CQ + SP : CR                               

3.13 

1.02   

1.15  

1.20       

    0.322 

    0.984 

AQ + SP   

AQ + SP: CR                                 

1.88  

1.01   

1.22   

1.31       

    0.607 

    0.996 

ART+ SP 

ART+ SP:CR                               

2.72  

0.97  

1.17  

1.26       

    0.392 

    0.982 

Age 

Age: CR                     

0.91  

0.96  

 

0.53 

0.60                      

    0.859 

    0.948 

Weight 

Weight: CR                    

1.63 

1.02  

 

0.32  

0.22                  

    0.124 

    0.940 

Sexmale   

Sexmale: CR                  

2.20 

1.04  

0.80  

0.88                

    0.328 

    0.961 

Assoct:  

Assoct :CR                    

0.06 

0.98   

1.26  

0.78                      

    0.029 

    0.982 

      LONGITUDINAL PROCESS (hemoglobin level) 

                                     Slope 

Intercept 7.51   0.76    <0.0001 

Time 0.02  0.01    <0.0001 

Sexmale 0.08   0.24         0.752 

Age 0.11   

 

0.13         0.383 

Weight 0.12 0.07        0.067 

CQ + SP   

 

0.25   0.30         0.406 

AQ + SP   

 

-0.12   0.31        0.704 

ART+ SP 

 

 0.30   0.32         0.352 

Random effects 

Intercept 

Residual 

 

 

 

0.86 

1.20 

 

 

Log-Lik 

BIC 

-767.13 

 1709.6 

  

  



 

76 

 

Results in Table 5, indicated that the covariates, age, sex, and weight were not 

statistically significant in predicting the longitudinal hemoglobin scores. However, time 

and the intercept were statistically significant. With any passing day, the hemoglobin 

scores increase by 0.02 g/ul adjusting for other variables in the model. Also, without all 

other covariates, the hemoglobin level had a value of 7.51 g/ul. On competing risks 

survival process, all covariates were not statistically significant in predicting the risks 

of both severe malaria and withdrawal. In this setting, only the true hemoglobin level 

was significant in predicting the hazard of severe malaria, where the relative  risk of 

severe malaria was reduced by  0.06 (6.0%) for a unit change in true hemoglobin level. 

The results also suggest  that much of the variation was not resulting from subjects, as 

is indicated by the residuals. 

 

4.5 Model Comparison 

 As  shown in Table 2, Table 3, Table 4, and  Table 5 of  previous sections, it was 

observed that the separate linear mixed-effect model for parasite, only the intercept was 

associated with parasite counts. However, in the joint model process, the longitudinal 

process showed that the intercept, time, and sex were significantly associated with the 

longitudinal scores of parasite counts. Moreover, the estimates for  all covariates had 

smaller standard errors in the joint model longitudinal process of parasite counts than 

in the separate mixed-effect parasite model. On the separate cause-specific Cox model, 

no variable was found to be significantly associated with the risks of severe malaria and 

withdrawal. To the contrary, in the joint model setting, the true parasite count was 

significantly associated with the risk of severe malaria in the presence of withdrawal. 

However, the coefficient estimates in the separate model had reduced standard errors 

than in the event process of the joint model. 
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The separate mixed-effect model for the hemoglobin scores, had time and the intercept  

strongly associated with the longitudinal marker hemoglobin. In the joint model setting, 

the same was the case. However, the estimates had small standard errors in the seperate 

models than the joint model setting. For the competing risks models, the true 

hemoglobin value was significant in the joint modelling setting. There was no covariate 

that was significant in separate cause-specific hazard model. The results also suggested 

elevated standard errors for the estimates in the joint model estimates for the survival 

process. 

 

In order to compare the models, the log-likelihood estimates were used. The separate  

hemoglobin longitudinal model,  had the log- likelihood -623.91, and the joint model 

had the log-likelihood estimate of -767.13, indicating that the separate model had the 

better fit to the data than the joint model. Also for the parasite count  model, the separate 

model had log- likelihood of -988.24 where as the joint model had the log likelihood 

estimate -1134.2, thus the separate model preferable than the competing risks joint 

model. The same conclusion was reached, when estimates for Bayesian Information 

Criteria were used for  the models. The choice of seperate model is also attributed to  

small standard errors in the separate models than the joint models, as models with small 

standard errors are preferable than models with large standard errors (McCrink et al., 

2011).  
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CHAPTER 5 

 

DISCUSSION 

 

In the analysis of this data, for the mixed-effects model for hemoglobin level, time was 

significant in determining the hemoglobin level for each passing day. The increase in 

hemoglobin level as time passes could be due to clearence of parasites, hence reducing 

their attack of the red blood cells. Normally the Plasmodium falciparum survives  up to 

four days in the host cells (White, 2017). In the longitudinal model for parasite count, 

none of the covariates considered showed significant results. This is contrary to 

observations in biomedical studies where in parasite clearence curve, time shows to be 

significant (White,2011).  

 

For the survival processes alone in time-dependent Cox model, none of the covariates 

considered were associated with the risk processes. This suggested that when analyzing 

this data these covariates could not be considered. However in a different study, for 

malaria, age was found to be significantly associated with the risk of severe malaria, 

with higher odds of malaria in younger children (Nyirakanani et al.,2018), which 

suggested need to categorise age variable. In all risk models, no covariate was 

associated with the risk of withdrawal. This could be the case as withdrawal conditions 

might not be clinically associated  the covariates used in this study. 
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The analysis revealed that when joint model of parasite count was fitted, body weight, 

sex and true parasite count were associated with the risk of severe malaria. The study 

found that the risk of severe malaria increased with an increase in body weight. This 

result was different from some work in literature where the higher parasitological 

response is expected to be higher in the underweight children  than the overweight 

children (Djimde et al., 2019). This suggests need to categorize body weight when 

analysing malaria data. The higher risk in male children than female children could be 

due to more cases of male participants in the study resulting in slightly increased cases 

of severe malaria in males than in children. The significant result between true parasite 

count and risk of severe malaria is an effect traditionally presented in medicine, that as 

the parasite counts decrease, the risk of severe malaria also decreases as patients take 

the randomised drugs and have the hemoglobin levels increasing. There was also an 

improvement in the longitudinal process of parasite counts as time was statistically 

significant with a reduction in parasite count as time passed. This is what is clinically 

expected in biomedical studies of malaria. The parasite counts were higher in male 

children than in female children. This could be the case possibly due to more males in 

the study than females participants, as there is no biological association between the 

parasite count and gender of children (Nyirakanani et al.,2018).  

 

For the joint model of hemoglobin level, in the risk process, only the true hemoglobin 

level was associated with the risk of severe malaria. For any unit change in hemoglobin 

level, the relative risk of severe malaria decreased. This could be the case due to 

reduction in the parasite counts as days passed. This could result into more hemoglobin 

levels hence reduced risk of severe malaria as work by Lombardo et al., (2017)  yielded 

the same results. In the longitudinal process,  time was also statistically significant with 
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increased hemoglobin level  as time passed. The possibility in clinical studies is that    

time has detrimental effect on parasite count hence reduced attack of Parasitaemia 

falciparum on red blood cells.  

 

For this data in general, the separate models seemed to be better to perform the analysis 

than the joint models with competing risks. This is attributed to lack of association 

between the risk processes and the baseline longitudinal markers in the time-dependent 

Cox models. Smaller standard errors for the seperate models also contributed to the 

choice of seperate models as models with small standard errors are preffered to models 

with large standard errors (Nguti et al., 2005). However, in literature, joint models 

considering competing risks by Hevia (2014), Hickey et al., (2017), and Andrinopoulou 

et al., (2014, 2017) were preffered for analysis of  data.The choice was clear as there 

were  associations between the longitudinal markers of interest in each study and the 

event or survival procesess in seperate time-dependent Cox models. In the work by 

Hevia (2014), the joint model had smaller standard errors than the seperate model, 

hence giving the joint models preference. 
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CHAPTER 6 

CONCLUSION, RECOMMENDATIONS, AND LIMITATIONS 

 

This chapter gives the summary of the results obtained in the analysis of malaria data 

using joint models with competing risks data. In it recommendations and possible 

limitations of the study are also included. 

 

6.1 Conclusion 

In clinical studies, it is common to collect survival data and longitudinal data. When an 

interest lies on association between the survival process and longitudinal markers, joint 

models are applied to the analysis of such data. From the results, it was observed that 

when analyzing the longitudinal markers of hemoglobin and parasite count in mixed 

effects models, time should be considered as it is statistically significant in predicting 

the scores of hemoglobin and parasite count. In light of these results, covariates 

treatment, sex, weight, age, parasite count and hemoglobin level may not be considered 

in seperate time-dependent Cox model. However, grouping weight and age may give 

some insight in the risk process as was seen in some literature. As higlighted in the joint 

models, it is important to consider both true parasite counts and true hemoglobin levels 

when assessing the risk of severe malaria in the presence of competing risk withdrawal.  

 

When analysing the longitudinal malaria outcomes together with competing risks 

survival malaria outcomes in randomized controlled trials for malaria studies, seperate 

methods for longitudinal data and survival data can be used when there is no association 
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between baseline parasite count, hemoglobin level and the risks of severe malaria and 

withdrawal. However, joint models should only be considered when  there is an 

association between the parasite count, hemoglobin and events’ processes. Since there 

was no association between the longitudinal and survival processes, then separate 

models proved to be the better model fits to analyze these malaria outcomes data than 

the joint models with competing risks as shown by estimates of Bayesian information 

criteria. 

 

6.2 Recommendations 

In clinical studies for malaria, when longitudinal data and survival data are available, 

and  there is no association between the survival process and the longitudinal process, 

then, the  separate analysis of these data can be done. However, it is recommended that 

where the association does exist, use of joint models should be considered. For this 

malaria data, the use of separate models for longitudinal and competing risks survival 

malaria outccomes as there is no association between the events’ process and 

longitudinal process. It is also recommended that doing the same study with different 

correlation levels between the survival and longitudinal outcomes, may improve the 

results possibly using simulation. Exploring newly developed methods with possible 

diagnostic methods may help to improve model selection procedures, and improve the 

results.  

 

6.3 Limitations 

In biomedical  studies, where statistical tools are used, further progress is needed in this 

area of joint modelling of longitudinal data with competing risks survival data to 

advance tools for better analysis, as the field is in its early developmental stages, and 
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restricted in its application to biomedical studies. For instance, there is a need for  

development of diagnostic methods for model validation, selection and comparison, 

and also models that can include more than one  longitudinal biomarkers of interest into 

a single competing risks joint model. 
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APPENDICES 

 

CODES USED FOR ANALYSIS IN R 

 

PACKAGES USED 

 

library(survival) 

library(lattice) 

library(splines) 

library(foreign) 

library(nlme4) 

library(reshape2) 

library(nlme) 

library(JM) 

library(cmprsk) 

 

DESCRIPTIVES  

summary(CMPDATA$age) 

summary(CMPDATA$sex)/2 

summary(CMPDATA$status) 

summary(CMPDATA$parasite0) 

summary(CMPDATA$hb0,CMPDATA$parasite0) 

 

BOXPLOTS 

 

boxplot(parasite~status2, ylab = "parasite count", xlab = "Event type", main="parasite 

Vs Event type", cex.main=0.9, cex.axis=0.7, las=1, ylim=c(0,14), data=RMW) 

 

boxplot(hb~status2, ylab = "hemoglobin level", xlab = "Event type", 

main="hemoglobin Vs Event type", cex.main=0.9, cex.axis=0.7, las=1, ylim=c(6,14), 

data=RMW) 

 

BAR PLOTS 

attach(CMPDATA) 

par(mfrow=c(1,3)) 

 

Table1<- table(sex, status3) 

barplot(Table1, beside=T, legend.text = c("female", "male"), xlab="Event type", main 

= "gender Vs event type", cex.main=0.9, cex.axis = 0.7) 
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Table2<- table(treat, status3) 

 

barplot(Table2, beside=T, legend.text = c("SP", "SP+CQ", "SP+AQ", "SP+ART"), 

xlab="Event type", main = "treat Vs event type", cex.main=0.9, cex.axis = 0.7) 

 

LONGITUDINAL PROFILES: USING PACKAGE: lattice 

 

xyplot(parasite~obtime|treat, group= patient, data=RMW, xlab=" Time (Days) ", 

ylab="parasite count", col=1, type = "l", main = "individual parasite profile", 

cex.main = 0.1) 

 

xyplot(hb~obtime|treat, group= patient, data=RMW, xlab=" Time (Days) ", ylab= 

"hemoglobin level", col=1, type = "l", main = "individual hemoglobin profile", 

cex.main = 0.1) 

 

LINEAR MIXED EFFECTS MODELS FOR PARASITES AND 

HEMOGLOBIN 

FITP<-lme(parasite~ treat + sex + age + weight+ obtime, random = ~1|patient,data= 

RMW) 

FITH<-lme(hb~ obtime + treat + sex + age + weight, random=~1|patient, 

data=RMW) 

summary(FITH) 

intervals(FITH) // Obtain 95% CI for coef 

 

SURVIVAL ANALYSIS 

CUMULATIVE INCIDENCE CURVES: Using cmprsk package 

CUM<-cuminc(ftime = time,fstatus = status,rho = 0,cencode = "censored") 

 

par(mfrow=c(1,3)) 

 

plot(CUM,xlab="time in days",  col=c(1,2)) 

COMPETING RISKS MODEL [ Cause-specific time-dependent Cox Model] 

 

NCOMP<-coxph(Surv(time, status2)~(treat + sex + age + sex + weight + hb0 + 

parasite0)*CR + strata(CR), data = CMPDATA) 
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JOINT MODELS 

 

xyplot(parasite ~ obtime | status, data = RMW, panel = function(x, y) { panel. 

xyplot(x, y, grid = FALSE, type = c("p", "smooth"), col.line = "black") },ylab = 

"parasite count",xlab = "time in days", pch=16) 

 

xyplot(hb ~ obtime | status, data = RMW, panel = function(x, y) { panel.xyplot(x, y, 

grid = FALSE, type = c("p", "smooth"), col.line = "black") }, ylab = "hemoglobin 

level",xlab = "time in days", pch=16) 

 

THE JOINT MODELS IN THE PRESENCE OF COMPETING RISKS 

 

JOINTH<-jointModel(FITH, COMPCOX, timeVar = "obtime", method = "spline-PH-

aGH", CompRisk = TRUE, interFact = list(value=~CR, data= CMPDATA)) 

 

JOINTP<-jointModel(FITP, COMPCOX, timeVar = "obtime", method = "spline-PH-

aGH", CompRisk = TRUE, interFact = list(value=~CR, data= CMPDATA)) 

 

DATA OBJECTS IN THE PROJECT R FILE 

 

BCOMP: This contains the fitted Extended Cox Model with baseline longitudinal 

markers  

FITH: Linear Mixed-effect Model for hemoglobin  

FITP: Linear Mixed-effect Model for parasite  

JCOX: Cox model used in the joint modelling  

JOINTH: Hemoglobin Competing Risks Joint Model  

JOINTP: Parasite Competing Risks Joint Model 

CMPDATA: This is the competing risks Data used in the Analysis of this project  

RMW: This is the Longitudinal Data for parasites and hemoglobin used in the 

analysis 

 

 


